整个曲线产生了各种形状的奈凡林纳电流

IF 1.2 2区 数学 Q1 MATHEMATICS
Hao Wu, Song-Yan Xie
{"title":"整个曲线产生了各种形状的奈凡林纳电流","authors":"Hao Wu,&nbsp;Song-Yan Xie","doi":"10.1112/jlms.70177","DOIUrl":null,"url":null,"abstract":"<p>First, we show that every complex torus <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathbb {T}$</annotation>\n </semantics></math> contains some entire curve <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>:</mo>\n <mi>C</mi>\n <mo>→</mo>\n <mi>T</mi>\n </mrow>\n <annotation>$g: \\mathbb {C}\\rightarrow \\mathbb {T}$</annotation>\n </semantics></math> such that the concentric holomorphic discs <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <mi>g</mi>\n <mspace></mspace>\n <msub>\n <mo>|</mo>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>¯</mo>\n </mover>\n <mi>r</mi>\n </msub>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>r</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <annotation>$\\lbrace g\\,\\vert _{\\overline{\\mathbb {D}}_{r}}\\rbrace _{r&gt;0}$</annotation>\n </semantics></math> can generate all the Nevanlinna/Ahlfors currents on <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathbb {T}$</annotation>\n </semantics></math> at cohomological level. This confirms an anticipation of Sibony. Developing further our new method, we can construct some twisted entire curve <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>C</mi>\n <mo>→</mo>\n <msup>\n <mi>CP</mi>\n <mn>1</mn>\n </msup>\n <mo>×</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$f: \\mathbb {C}\\rightarrow \\mathbb {CP}^1\\times E$</annotation>\n </semantics></math> in the product of the rational curve <span></span><math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathbb {CP}^1$</annotation>\n </semantics></math> and an elliptic curve <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>, such that, concerning Siu's decomposition, demanding any cardinality <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n </mrow>\n <mo>∈</mo>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>∪</mo>\n <mrow>\n <mo>{</mo>\n <mi>∞</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$|J|\\in \\mathbb {Z}_{\\geqslant 0}\\cup \\lbrace \\infty \\rbrace$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>diff</mi>\n </msub>\n <annotation>$\\mathcal {T}_{{\\rm diff}}$</annotation>\n </semantics></math> is trivial (<span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$|J|\\geqslant 1$</annotation>\n </semantics></math>) or not (<span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$|J|\\geqslant 0$</annotation>\n </semantics></math>), we can always find a sequence of concentric holomorphic discs <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <mi>f</mi>\n <mspace></mspace>\n <msub>\n <mo>|</mo>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>¯</mo>\n </mover>\n <msub>\n <mi>r</mi>\n <mi>j</mi>\n </msub>\n </msub>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\lbrace f\\,\\vert _{\\overline{\\mathbb {D}}_{r_j}}\\rbrace _{j \\geqslant 1}$</annotation>\n </semantics></math> to generate a Nevanlinna/Ahlfors current <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>=</mo>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>T</mi>\n <mi>diff</mi>\n </msub>\n </mrow>\n <annotation>$\\mathcal {T}=\\mathcal {T}_{{\\rm alg}}+\\mathcal {T}_{{\\rm diff}}$</annotation>\n </semantics></math> with the singular part <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>j</mi>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n </msub>\n <mspace></mspace>\n <msub>\n <mi>λ</mi>\n <mi>j</mi>\n </msub>\n <mo>·</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>C</mi>\n <mi>j</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {T}_{{\\rm alg}}=\\sum _{j\\in J} \\,\\lambda _j\\cdot [\\mathsf {C}_j]$</annotation>\n </semantics></math> in the desired shape. This fulfills the missing case where <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$|J|=0$</annotation>\n </semantics></math> in the previous work of Huynh–Xie. By a result of Duval, each <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mi>j</mi>\n </msub>\n <annotation>$\\mathsf {C}_j$</annotation>\n </semantics></math> must be rational or elliptic. We will show that there is no <i>a priori</i> restriction on the numbers of rational and elliptic components in the support of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <annotation>$\\mathcal {T}_{{\\rm alg}}$</annotation>\n </semantics></math>, thus answering a question of Yau and Zhou. Moreover, we will show that the positive coefficients <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>λ</mi>\n <mi>j</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n </msub>\n <annotation>$\\lbrace \\lambda _j\\rbrace _{j\\in J}$</annotation>\n </semantics></math> can be arbitrary as long as the total mass of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <annotation>$\\mathcal {T}_{{\\rm alg}}$</annotation>\n </semantics></math> is less than or equal to 1.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entire curves generating all shapes of Nevanlinna currents\",\"authors\":\"Hao Wu,&nbsp;Song-Yan Xie\",\"doi\":\"10.1112/jlms.70177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First, we show that every complex torus <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$\\\\mathbb {T}$</annotation>\\n </semantics></math> contains some entire curve <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>:</mo>\\n <mi>C</mi>\\n <mo>→</mo>\\n <mi>T</mi>\\n </mrow>\\n <annotation>$g: \\\\mathbb {C}\\\\rightarrow \\\\mathbb {T}$</annotation>\\n </semantics></math> such that the concentric holomorphic discs <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <mi>g</mi>\\n <mspace></mspace>\\n <msub>\\n <mo>|</mo>\\n <msub>\\n <mover>\\n <mi>D</mi>\\n <mo>¯</mo>\\n </mover>\\n <mi>r</mi>\\n </msub>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>r</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace g\\\\,\\\\vert _{\\\\overline{\\\\mathbb {D}}_{r}}\\\\rbrace _{r&gt;0}$</annotation>\\n </semantics></math> can generate all the Nevanlinna/Ahlfors currents on <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$\\\\mathbb {T}$</annotation>\\n </semantics></math> at cohomological level. This confirms an anticipation of Sibony. Developing further our new method, we can construct some twisted entire curve <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>C</mi>\\n <mo>→</mo>\\n <msup>\\n <mi>CP</mi>\\n <mn>1</mn>\\n </msup>\\n <mo>×</mo>\\n <mi>E</mi>\\n </mrow>\\n <annotation>$f: \\\\mathbb {C}\\\\rightarrow \\\\mathbb {CP}^1\\\\times E$</annotation>\\n </semantics></math> in the product of the rational curve <span></span><math>\\n <semantics>\\n <msup>\\n <mi>CP</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$\\\\mathbb {CP}^1$</annotation>\\n </semantics></math> and an elliptic curve <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math>, such that, concerning Siu's decomposition, demanding any cardinality <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>J</mi>\\n <mo>|</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msub>\\n <mi>Z</mi>\\n <mrow>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>∪</mo>\\n <mrow>\\n <mo>{</mo>\\n <mi>∞</mi>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$|J|\\\\in \\\\mathbb {Z}_{\\\\geqslant 0}\\\\cup \\\\lbrace \\\\infty \\\\rbrace$</annotation>\\n </semantics></math> and that <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>diff</mi>\\n </msub>\\n <annotation>$\\\\mathcal {T}_{{\\\\rm diff}}$</annotation>\\n </semantics></math> is trivial (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>J</mi>\\n <mo>|</mo>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$|J|\\\\geqslant 1$</annotation>\\n </semantics></math>) or not (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>J</mi>\\n <mo>|</mo>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$|J|\\\\geqslant 0$</annotation>\\n </semantics></math>), we can always find a sequence of concentric holomorphic discs <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <mi>f</mi>\\n <mspace></mspace>\\n <msub>\\n <mo>|</mo>\\n <msub>\\n <mover>\\n <mi>D</mi>\\n <mo>¯</mo>\\n </mover>\\n <msub>\\n <mi>r</mi>\\n <mi>j</mi>\\n </msub>\\n </msub>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace f\\\\,\\\\vert _{\\\\overline{\\\\mathbb {D}}_{r_j}}\\\\rbrace _{j \\\\geqslant 1}$</annotation>\\n </semantics></math> to generate a Nevanlinna/Ahlfors current <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>T</mi>\\n <mi>alg</mi>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>T</mi>\\n <mi>diff</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathcal {T}=\\\\mathcal {T}_{{\\\\rm alg}}+\\\\mathcal {T}_{{\\\\rm diff}}$</annotation>\\n </semantics></math> with the singular part <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>alg</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mo>∑</mo>\\n <mrow>\\n <mi>j</mi>\\n <mo>∈</mo>\\n <mi>J</mi>\\n </mrow>\\n </msub>\\n <mspace></mspace>\\n <msub>\\n <mi>λ</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>·</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>C</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {T}_{{\\\\rm alg}}=\\\\sum _{j\\\\in J} \\\\,\\\\lambda _j\\\\cdot [\\\\mathsf {C}_j]$</annotation>\\n </semantics></math> in the desired shape. This fulfills the missing case where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>J</mi>\\n <mo>|</mo>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$|J|=0$</annotation>\\n </semantics></math> in the previous work of Huynh–Xie. By a result of Duval, each <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mi>j</mi>\\n </msub>\\n <annotation>$\\\\mathsf {C}_j$</annotation>\\n </semantics></math> must be rational or elliptic. We will show that there is no <i>a priori</i> restriction on the numbers of rational and elliptic components in the support of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>alg</mi>\\n </msub>\\n <annotation>$\\\\mathcal {T}_{{\\\\rm alg}}$</annotation>\\n </semantics></math>, thus answering a question of Yau and Zhou. Moreover, we will show that the positive coefficients <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>λ</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n <mo>∈</mo>\\n <mi>J</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace \\\\lambda _j\\\\rbrace _{j\\\\in J}$</annotation>\\n </semantics></math> can be arbitrary as long as the total mass of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mi>alg</mi>\\n </msub>\\n <annotation>$\\\\mathcal {T}_{{\\\\rm alg}}$</annotation>\\n </semantics></math> is less than or equal to 1.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 5\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70177\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

首先,我们证明了每一个复环T $\mathbb {T}$包含一些完整的曲线g:C→T $g: \mathbb {C}\rightarrow \mathbb {T}$使得同心全纯盘{g = 0 D¯r}R &gt;0 $\lbrace g\,\vert _{\overline{\mathbb {D}}_{r}}\rbrace _{r&gt;0}$可以产生T $\mathbb {T}$上所有的内万林纳/阿尔弗斯电流在上同调水平。这证实了人们对Sibony的期待。进一步发展我们的新方法,我们可以构造一些扭曲的整条曲线f:有理曲线CP 1 $\mathbb {CP}^1$与椭圆曲线E $E$之积C→CP 1 × E $f: \mathbb {C}\rightarrow \mathbb {CP}^1\times E$,有:关于Siu的分解,要求任意基数| J |∈Z小于0∪{∞}$|J|\in \mathbb {Z}_{\geqslant 0}\cup \lbrace \infty \rbrace$T差异$\mathcal {T}_{{\rm diff}}$是微不足道的(| J |小于1 $|J|\geqslant 1$)或不是(| J |小于0)$|J|\geqslant 0$),我们总能找到一个b| {D¯r j}的同心全纯盘序列j或小于1 $\lbrace f\,\vert _{\overline{\mathbb {D}}_{r_j}}\rbrace _{j \geqslant 1}$产生Nevanlinna/Ahlfors电流T = T algg + T diff$\mathcal {T}=\mathcal {T}_{{\rm alg}}+\mathcal {T}_{{\rm diff}}$奇异部分T =∑j∈j λ j·[C] $\mathcal {T}_{{\rm alg}}=\sum _{j\in J} \,\lambda _j\cdot [\mathsf {C}_j]$在理想的形状。 这填补了Huynh-Xie之前的工作中|J|=0$ |J|=0$的缺失情况。根据Duval的结果,每个C j$ \mathsf {C}_j$必须是有理数或椭圆的。我们将证明在talg $\mathcal {T}_{{\rm alg}}$的支持下,有理数和椭圆分量的个数没有先验限制,从而回答了Yau和Zhou的问题。此外,我们将证明,正系数{λ j} j∈j $\lbrace \lambda _j\rbrace _{j\in j}$可以是任意的,只要总质量T alg $\mathcal {T}_{{\rm alg}}$小于或等于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Entire curves generating all shapes of Nevanlinna currents

Entire curves generating all shapes of Nevanlinna currents

Entire curves generating all shapes of Nevanlinna currents

Entire curves generating all shapes of Nevanlinna currents

First, we show that every complex torus T $\mathbb {T}$ contains some entire curve g : C T $g: \mathbb {C}\rightarrow \mathbb {T}$ such that the concentric holomorphic discs { g | D ¯ r } r > 0 $\lbrace g\,\vert _{\overline{\mathbb {D}}_{r}}\rbrace _{r>0}$ can generate all the Nevanlinna/Ahlfors currents on T $\mathbb {T}$ at cohomological level. This confirms an anticipation of Sibony. Developing further our new method, we can construct some twisted entire curve f : C CP 1 × E $f: \mathbb {C}\rightarrow \mathbb {CP}^1\times E$ in the product of the rational curve CP 1 $\mathbb {CP}^1$ and an elliptic curve E $E$ , such that, concerning Siu's decomposition, demanding any cardinality | J | Z 0 { } $|J|\in \mathbb {Z}_{\geqslant 0}\cup \lbrace \infty \rbrace$ and that T diff $\mathcal {T}_{{\rm diff}}$ is trivial ( | J | 1 $|J|\geqslant 1$ ) or not ( | J | 0 $|J|\geqslant 0$ ), we can always find a sequence of concentric holomorphic discs { f | D ¯ r j } j 1 $\lbrace f\,\vert _{\overline{\mathbb {D}}_{r_j}}\rbrace _{j \geqslant 1}$ to generate a Nevanlinna/Ahlfors current T = T alg + T diff $\mathcal {T}=\mathcal {T}_{{\rm alg}}+\mathcal {T}_{{\rm diff}}$ with the singular part T alg = j J λ j · [ C j ] $\mathcal {T}_{{\rm alg}}=\sum _{j\in J} \,\lambda _j\cdot [\mathsf {C}_j]$ in the desired shape. This fulfills the missing case where | J | = 0 $|J|=0$ in the previous work of Huynh–Xie. By a result of Duval, each C j $\mathsf {C}_j$ must be rational or elliptic. We will show that there is no a priori restriction on the numbers of rational and elliptic components in the support of T alg $\mathcal {T}_{{\rm alg}}$ , thus answering a question of Yau and Zhou. Moreover, we will show that the positive coefficients { λ j } j J $\lbrace \lambda _j\rbrace _{j\in J}$ can be arbitrary as long as the total mass of T alg $\mathcal {T}_{{\rm alg}}$ is less than or equal to 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信