Yanyan Liu, Zengqian Liu, Zhenyu Liu, Wenhao Zhou, Sen Yu, Bolv Xiao, Zongyi Ma, Zhefeng Zhang, Robert O. Ritchie
{"title":"大自然激发出新的高性能金属复合材料","authors":"Yanyan Liu, Zengqian Liu, Zhenyu Liu, Wenhao Zhou, Sen Yu, Bolv Xiao, Zongyi Ma, Zhefeng Zhang, Robert O. Ritchie","doi":"10.1002/idm2.12251","DOIUrl":null,"url":null,"abstract":"<p>The intricately complex structures of natural biological materials, which endow them with exceptional properties, serve as unparalleled models and sources of inspiration for the design of synthetic materials. However, translating these structures into metallic systems poses formidable challenges due to the demanding conditions required for metal processing. This brief perspective spotlights the 3D interpenetrating-phase structures evolved in biological materials and distills key insights for bioinspired structural design in metallic materials. We highlight recent advancements in creating bioinspired metal composites, particularly through advanced processing techniques like metal melt infiltration into porous scaffolds, achieving remarkable synergies between various mechanical properties and functionalities. Additionally, AI-driven approaches show immense potential to accelerate the iterative process of optimizing structures and properties in bioinspired designs.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 3","pages":"502-507"},"PeriodicalIF":24.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12251","citationCount":"0","resultStr":"{\"title\":\"Nature Inspires New High-Performance Metal Composites\",\"authors\":\"Yanyan Liu, Zengqian Liu, Zhenyu Liu, Wenhao Zhou, Sen Yu, Bolv Xiao, Zongyi Ma, Zhefeng Zhang, Robert O. Ritchie\",\"doi\":\"10.1002/idm2.12251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The intricately complex structures of natural biological materials, which endow them with exceptional properties, serve as unparalleled models and sources of inspiration for the design of synthetic materials. However, translating these structures into metallic systems poses formidable challenges due to the demanding conditions required for metal processing. This brief perspective spotlights the 3D interpenetrating-phase structures evolved in biological materials and distills key insights for bioinspired structural design in metallic materials. We highlight recent advancements in creating bioinspired metal composites, particularly through advanced processing techniques like metal melt infiltration into porous scaffolds, achieving remarkable synergies between various mechanical properties and functionalities. Additionally, AI-driven approaches show immense potential to accelerate the iterative process of optimizing structures and properties in bioinspired designs.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"4 3\",\"pages\":\"502-507\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12251\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nature Inspires New High-Performance Metal Composites
The intricately complex structures of natural biological materials, which endow them with exceptional properties, serve as unparalleled models and sources of inspiration for the design of synthetic materials. However, translating these structures into metallic systems poses formidable challenges due to the demanding conditions required for metal processing. This brief perspective spotlights the 3D interpenetrating-phase structures evolved in biological materials and distills key insights for bioinspired structural design in metallic materials. We highlight recent advancements in creating bioinspired metal composites, particularly through advanced processing techniques like metal melt infiltration into porous scaffolds, achieving remarkable synergies between various mechanical properties and functionalities. Additionally, AI-driven approaches show immense potential to accelerate the iterative process of optimizing structures and properties in bioinspired designs.