{"title":"柔性纤维形超级电容器:结构、材料、制造方法和应用","authors":"Ding Liu, Yuchang Xue, Xiao Yang, Yanan Shen, Pengyu Zhang, Hui Zheng, Chunyang Wang, Haisheng Chen, Xinghua Zheng, Ting Zhang","doi":"10.1002/idm2.12243","DOIUrl":null,"url":null,"abstract":"<p>The advent of wearable electronics has generated considerable interest in the development of fiber-shaped supercapacitors (FSCs). FSCs have several applications, such as integration into wearable power fabrics for modular energy storage, coupling with specific devices, forming composite fibers, and combining with energy-harvesting fibers to develop integrated energy-harvesting and storage-usage fabrics. This review provides a comprehensive overview of FSCs based on their fundamental principles, detailing various structural configurations (e.g., parallel, wrapped, twisted, and coaxial) and substrate materials (e.g., carbon-based, polymeric, and metallic fibers), along with strategies for enhancing their electrochemical and mechanical performance. Furthermore, it outlines large-scale fabrication techniques, such as wet spinning, synchronous coupling, direct ink writing, and thermal drawing. This review identifies the challenges currently facing FSCs research and suggests directions for future development.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 3","pages":"377-411"},"PeriodicalIF":24.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12243","citationCount":"0","resultStr":"{\"title\":\"Flexible Fiber-Shaped Supercapacitors: Structures, Materials, Fabrication Methods, and Applications\",\"authors\":\"Ding Liu, Yuchang Xue, Xiao Yang, Yanan Shen, Pengyu Zhang, Hui Zheng, Chunyang Wang, Haisheng Chen, Xinghua Zheng, Ting Zhang\",\"doi\":\"10.1002/idm2.12243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advent of wearable electronics has generated considerable interest in the development of fiber-shaped supercapacitors (FSCs). FSCs have several applications, such as integration into wearable power fabrics for modular energy storage, coupling with specific devices, forming composite fibers, and combining with energy-harvesting fibers to develop integrated energy-harvesting and storage-usage fabrics. This review provides a comprehensive overview of FSCs based on their fundamental principles, detailing various structural configurations (e.g., parallel, wrapped, twisted, and coaxial) and substrate materials (e.g., carbon-based, polymeric, and metallic fibers), along with strategies for enhancing their electrochemical and mechanical performance. Furthermore, it outlines large-scale fabrication techniques, such as wet spinning, synchronous coupling, direct ink writing, and thermal drawing. This review identifies the challenges currently facing FSCs research and suggests directions for future development.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"4 3\",\"pages\":\"377-411\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12243\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Flexible Fiber-Shaped Supercapacitors: Structures, Materials, Fabrication Methods, and Applications
The advent of wearable electronics has generated considerable interest in the development of fiber-shaped supercapacitors (FSCs). FSCs have several applications, such as integration into wearable power fabrics for modular energy storage, coupling with specific devices, forming composite fibers, and combining with energy-harvesting fibers to develop integrated energy-harvesting and storage-usage fabrics. This review provides a comprehensive overview of FSCs based on their fundamental principles, detailing various structural configurations (e.g., parallel, wrapped, twisted, and coaxial) and substrate materials (e.g., carbon-based, polymeric, and metallic fibers), along with strategies for enhancing their electrochemical and mechanical performance. Furthermore, it outlines large-scale fabrication techniques, such as wet spinning, synchronous coupling, direct ink writing, and thermal drawing. This review identifies the challenges currently facing FSCs research and suggests directions for future development.