基于机器视觉的维修人员智能跟踪系统研究

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL
Yinglin Ma, Hongmei Shi, Yao Wang, Baofeng Li
{"title":"基于机器视觉的维修人员智能跟踪系统研究","authors":"Yinglin Ma,&nbsp;Hongmei Shi,&nbsp;Yao Wang,&nbsp;Baofeng Li","doi":"10.1155/atr/2728315","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Upon returning to the depot, rail transit vehicles require necessary maintenance. The working condition of train maintenance personnel directly impacts the safety of both staff and equipment. Therefore, effective monitoring and control of activities within train roof access platforms are essential. Traditional manual monitoring demands substantial manpower and is prone to human error, whereas machine vision–based intelligent monitoring offers a promising alternative, reducing the dispatch control center (DCC) workload while enhancing safety management. Our intelligent monitoring approach involves three key steps: train maintenance personnel identification, tracking of maintenance activities to generate movement trajectories, and analysis of movement patterns to detect anomalous behavior. This study primarily addresses the challenges of personnel identification and process tracking. In the scenario of train maintenance, facial recognition is limited by posture variations, making direct video tracking impractical. Pedestrian reidentification (Re-ID) also struggles with posture and attire changes. To address these issues, we propose a hybrid approach: facial recognition confirms personnel identity upon entry, followed by pedestrian feature extraction for Re-ID-based tracking throughout the maintenance process. To handle occlusion, we designed a Re-ID method based on body part recognition, segmenting features into head–shoulder, body, arm, and leg components, with higher weights assigned to visible parts. This method achieved improved mean average precision (mAP) and Rank-1 values of 87.6% and 95.7%, respectively, on the Market1501 dataset. A tracking and monitoring system was developed, effectively identifying and tracking maintenance activities, demonstrating a strong practical value. Furthermore, this work lays the groundwork for future research into trajectory-based abnormal behavior detection.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/2728315","citationCount":"0","resultStr":"{\"title\":\"Research on Machine Vision–Based Intelligent Tracking System for Maintenance Personnel\",\"authors\":\"Yinglin Ma,&nbsp;Hongmei Shi,&nbsp;Yao Wang,&nbsp;Baofeng Li\",\"doi\":\"10.1155/atr/2728315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Upon returning to the depot, rail transit vehicles require necessary maintenance. The working condition of train maintenance personnel directly impacts the safety of both staff and equipment. Therefore, effective monitoring and control of activities within train roof access platforms are essential. Traditional manual monitoring demands substantial manpower and is prone to human error, whereas machine vision–based intelligent monitoring offers a promising alternative, reducing the dispatch control center (DCC) workload while enhancing safety management. Our intelligent monitoring approach involves three key steps: train maintenance personnel identification, tracking of maintenance activities to generate movement trajectories, and analysis of movement patterns to detect anomalous behavior. This study primarily addresses the challenges of personnel identification and process tracking. In the scenario of train maintenance, facial recognition is limited by posture variations, making direct video tracking impractical. Pedestrian reidentification (Re-ID) also struggles with posture and attire changes. To address these issues, we propose a hybrid approach: facial recognition confirms personnel identity upon entry, followed by pedestrian feature extraction for Re-ID-based tracking throughout the maintenance process. To handle occlusion, we designed a Re-ID method based on body part recognition, segmenting features into head–shoulder, body, arm, and leg components, with higher weights assigned to visible parts. This method achieved improved mean average precision (mAP) and Rank-1 values of 87.6% and 95.7%, respectively, on the Market1501 dataset. A tracking and monitoring system was developed, effectively identifying and tracking maintenance activities, demonstrating a strong practical value. Furthermore, this work lays the groundwork for future research into trajectory-based abnormal behavior detection.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/2728315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/atr/2728315\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/2728315","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

轨道交通车辆在返回车厂后,需要进行必要的维护。列车维修人员的工作状态直接影响到人员和设备的安全。因此,对列车顶板通道平台内的活动进行有效的监测和控制至关重要。传统的人工监控需要大量人力并且容易出现人为错误,而基于机器视觉的智能监控提供了一种有前途的替代方案,可以减少调度控制中心(DCC)的工作量,同时增强安全管理。我们的智能监控方法包括三个关键步骤:培训维修人员识别,跟踪维修活动以生成运动轨迹,分析运动模式以检测异常行为。本研究主要解决人员识别和过程跟踪的挑战。在火车维护场景中,面部识别受到姿势变化的限制,使得直接视频跟踪不切实际。行人再识别(Re-ID)也在努力改变姿势和着装。为了解决这些问题,我们提出了一种混合方法:面部识别在进入时确认人员身份,然后提取行人特征,在整个维护过程中进行基于re - id的跟踪。为了处理遮挡,我们设计了一种基于身体部位识别的Re-ID方法,将特征分割为头肩、身体、手臂和腿部,并为可见部位分配更高的权重。该方法在Market1501数据集上的平均精度(mAP)和Rank-1值分别提高了87.6%和95.7%。开发了跟踪监测系统,有效地识别和跟踪维修活动,具有较强的实用价值。此外,该工作为未来基于轨迹的异常行为检测研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Machine Vision–Based Intelligent Tracking System for Maintenance Personnel

Upon returning to the depot, rail transit vehicles require necessary maintenance. The working condition of train maintenance personnel directly impacts the safety of both staff and equipment. Therefore, effective monitoring and control of activities within train roof access platforms are essential. Traditional manual monitoring demands substantial manpower and is prone to human error, whereas machine vision–based intelligent monitoring offers a promising alternative, reducing the dispatch control center (DCC) workload while enhancing safety management. Our intelligent monitoring approach involves three key steps: train maintenance personnel identification, tracking of maintenance activities to generate movement trajectories, and analysis of movement patterns to detect anomalous behavior. This study primarily addresses the challenges of personnel identification and process tracking. In the scenario of train maintenance, facial recognition is limited by posture variations, making direct video tracking impractical. Pedestrian reidentification (Re-ID) also struggles with posture and attire changes. To address these issues, we propose a hybrid approach: facial recognition confirms personnel identity upon entry, followed by pedestrian feature extraction for Re-ID-based tracking throughout the maintenance process. To handle occlusion, we designed a Re-ID method based on body part recognition, segmenting features into head–shoulder, body, arm, and leg components, with higher weights assigned to visible parts. This method achieved improved mean average precision (mAP) and Rank-1 values of 87.6% and 95.7%, respectively, on the Market1501 dataset. A tracking and monitoring system was developed, effectively identifying and tracking maintenance activities, demonstrating a strong practical value. Furthermore, this work lays the groundwork for future research into trajectory-based abnormal behavior detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信