Anchana Kandasamy, Kavitha Chinnasamy, Suresh Kumar Paramasivam, Johnson Iruthayasamy
{"title":"褪黑素作为成熟抑制剂:提高红香蕉的保质期和品质","authors":"Anchana Kandasamy, Kavitha Chinnasamy, Suresh Kumar Paramasivam, Johnson Iruthayasamy","doi":"10.1111/jpi.70060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In climacteric fruits like banana (<i>Musa</i> spp.), ripening is driven by ethylene production and increased respiration, leading to rapid softening, quality loss, and disease susceptibility. This study was aimed to evaluate the effect of postharvest melatonin dip (1.0 mM and 1.5 mM for 15 min) on Red Banana stored under ambient and cold storage conditions. Melatonin significantly suppressed ethylene biosynthesis (Cohen's <i>d ƞ</i><sup>2</sup> = 0.85), reduced respiration rate (<i>ƞ</i><sup>2</sup> = 0.89), and delayed textural degradation by inhibiting cell wall-degrading enzymes (polygalacturonase, pectin methyl esterase, amylase, cellulase, and β-glucosidase) with 35.94% and 45.48% reduction in cumulative enzyme activity under ambient and cold storage, respectively. It also enhanced antioxidant enzyme activity resulting in 1.8- and 1.5-fold increases in enzyme activity in ambient and cold storage, respectively, mitigating oxidative stress and reducing anthracnose incidence. Consequently, melatonin extended shelf life by 2.67 days in ambient storage and 5.33 days in cold storage, without inducing chilling injury. These findings highlight melatonin as a natural, eco-friendly alternative, offering a sustainable strategy to enhance Red Banana storage and reduce postharvest losses. Its ability to modulate fruit metabolism, enhance stress responses, and membrane protection properties underscores its applied potential in postharvest management.</p>\n </div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 3","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin as a Ripening Inhibitor: Enhancing Shelf Life and Quality in Red Banana\",\"authors\":\"Anchana Kandasamy, Kavitha Chinnasamy, Suresh Kumar Paramasivam, Johnson Iruthayasamy\",\"doi\":\"10.1111/jpi.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In climacteric fruits like banana (<i>Musa</i> spp.), ripening is driven by ethylene production and increased respiration, leading to rapid softening, quality loss, and disease susceptibility. This study was aimed to evaluate the effect of postharvest melatonin dip (1.0 mM and 1.5 mM for 15 min) on Red Banana stored under ambient and cold storage conditions. Melatonin significantly suppressed ethylene biosynthesis (Cohen's <i>d ƞ</i><sup>2</sup> = 0.85), reduced respiration rate (<i>ƞ</i><sup>2</sup> = 0.89), and delayed textural degradation by inhibiting cell wall-degrading enzymes (polygalacturonase, pectin methyl esterase, amylase, cellulase, and β-glucosidase) with 35.94% and 45.48% reduction in cumulative enzyme activity under ambient and cold storage, respectively. It also enhanced antioxidant enzyme activity resulting in 1.8- and 1.5-fold increases in enzyme activity in ambient and cold storage, respectively, mitigating oxidative stress and reducing anthracnose incidence. Consequently, melatonin extended shelf life by 2.67 days in ambient storage and 5.33 days in cold storage, without inducing chilling injury. These findings highlight melatonin as a natural, eco-friendly alternative, offering a sustainable strategy to enhance Red Banana storage and reduce postharvest losses. Its ability to modulate fruit metabolism, enhance stress responses, and membrane protection properties underscores its applied potential in postharvest management.</p>\\n </div>\",\"PeriodicalId\":198,\"journal\":{\"name\":\"Journal of Pineal Research\",\"volume\":\"77 3\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pineal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70060\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70060","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Melatonin as a Ripening Inhibitor: Enhancing Shelf Life and Quality in Red Banana
In climacteric fruits like banana (Musa spp.), ripening is driven by ethylene production and increased respiration, leading to rapid softening, quality loss, and disease susceptibility. This study was aimed to evaluate the effect of postharvest melatonin dip (1.0 mM and 1.5 mM for 15 min) on Red Banana stored under ambient and cold storage conditions. Melatonin significantly suppressed ethylene biosynthesis (Cohen's d ƞ2 = 0.85), reduced respiration rate (ƞ2 = 0.89), and delayed textural degradation by inhibiting cell wall-degrading enzymes (polygalacturonase, pectin methyl esterase, amylase, cellulase, and β-glucosidase) with 35.94% and 45.48% reduction in cumulative enzyme activity under ambient and cold storage, respectively. It also enhanced antioxidant enzyme activity resulting in 1.8- and 1.5-fold increases in enzyme activity in ambient and cold storage, respectively, mitigating oxidative stress and reducing anthracnose incidence. Consequently, melatonin extended shelf life by 2.67 days in ambient storage and 5.33 days in cold storage, without inducing chilling injury. These findings highlight melatonin as a natural, eco-friendly alternative, offering a sustainable strategy to enhance Red Banana storage and reduce postharvest losses. Its ability to modulate fruit metabolism, enhance stress responses, and membrane protection properties underscores its applied potential in postharvest management.
期刊介绍:
The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.