解读局部微应变诱导的不对称铁单原子位优化,用于高效氧还原

IF 26.6 1区 材料科学 Q1 Engineering
Peng Zhang, Siying Huang, Kuo Chen, Xiaoqi Liu, Yachao Xu, Yongming Chai, Yunqi Liu, Yuan Pan
{"title":"解读局部微应变诱导的不对称铁单原子位优化,用于高效氧还原","authors":"Peng Zhang,&nbsp;Siying Huang,&nbsp;Kuo Chen,&nbsp;Xiaoqi Liu,&nbsp;Yachao Xu,&nbsp;Yongming Chai,&nbsp;Yunqi Liu,&nbsp;Yuan Pan","doi":"10.1007/s40820-025-01783-4","DOIUrl":null,"url":null,"abstract":"<div><p>Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe–N<sub>3</sub>S<sub>1</sub>) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe–N bonds and 1.5% tensile strain to Fe–S bonds, downshifting the <i>d</i>-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe–N<sub>3</sub>S<sub>1</sub> sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e<sup>−1</sup> s<sup>−1</sup> site<sup>−1</sup>, which are 53 mV more positive and 1.7 times that of flat Fe–N–S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe–N<sub>3</sub>S<sub>1</sub> sites into Fe–N<sub>3</sub> sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01783-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Deciphering Local Microstrain-Induced Optimization of Asymmetric Fe Single Atomic Sites for Efficient Oxygen Reduction\",\"authors\":\"Peng Zhang,&nbsp;Siying Huang,&nbsp;Kuo Chen,&nbsp;Xiaoqi Liu,&nbsp;Yachao Xu,&nbsp;Yongming Chai,&nbsp;Yunqi Liu,&nbsp;Yuan Pan\",\"doi\":\"10.1007/s40820-025-01783-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe–N<sub>3</sub>S<sub>1</sub>) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe–N bonds and 1.5% tensile strain to Fe–S bonds, downshifting the <i>d</i>-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe–N<sub>3</sub>S<sub>1</sub> sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e<sup>−1</sup> s<sup>−1</sup> site<sup>−1</sup>, which are 53 mV more positive and 1.7 times that of flat Fe–N–S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe–N<sub>3</sub>S<sub>1</sub> sites into Fe–N<sub>3</sub> sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01783-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01783-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01783-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

破坏类卟啉铁单原子催化剂的对称电子分布被认为是获得高本征活性的有效途径。了解几何微应变控制的催化性能对于进一步优化这些高效位点是非常可取的。本文通过用S原子取代一个N原子,揭示了局部微应变在非对称Fe单原子催化剂(Fe - n3s1)中提高内在活性和耐久性的关键作用。高曲率中空碳纳米球衬底对Fe-N键和Fe-S键分别施加了1.3%和1.5%的局部压缩应变,降低了d带中心的位移,加速了*OH还原动力学。因此,锚定在空心碳纳米球(FeNS-HNS-20)上的高度弯曲的Fe-N3S1位点具有可忽略不计的电流损耗,相对于RHE具有0.922 V的高半波电位和6.2 e−1 s−1位点−1的转换频率,分别比扁平的Fe-N-S位点高53 mV和1.7倍。更重要的是,多重operando光谱监测了应变Fe-N3S1位点为Fe-N3位点的动态优化,进一步减轻了*OH中间体的过度吸附。这项工作不仅为局部微应变诱导的催化增强提供了新的思路,而且为通过几何构型优化有效的不对称位点提供了可行的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering Local Microstrain-Induced Optimization of Asymmetric Fe Single Atomic Sites for Efficient Oxygen Reduction

Deciphering Local Microstrain-Induced Optimization of Asymmetric Fe Single Atomic Sites for Efficient Oxygen Reduction

Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe–N3S1) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe–N bonds and 1.5% tensile strain to Fe–S bonds, downshifting the d-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe–N3S1 sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e−1 s−1 site−1, which are 53 mV more positive and 1.7 times that of flat Fe–N–S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe–N3S1 sites into Fe–N3 sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信