Peng Zhang, Siying Huang, Kuo Chen, Xiaoqi Liu, Yachao Xu, Yongming Chai, Yunqi Liu, Yuan Pan
{"title":"解读局部微应变诱导的不对称铁单原子位优化,用于高效氧还原","authors":"Peng Zhang, Siying Huang, Kuo Chen, Xiaoqi Liu, Yachao Xu, Yongming Chai, Yunqi Liu, Yuan Pan","doi":"10.1007/s40820-025-01783-4","DOIUrl":null,"url":null,"abstract":"<div><p>Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe–N<sub>3</sub>S<sub>1</sub>) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe–N bonds and 1.5% tensile strain to Fe–S bonds, downshifting the <i>d</i>-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe–N<sub>3</sub>S<sub>1</sub> sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e<sup>−1</sup> s<sup>−1</sup> site<sup>−1</sup>, which are 53 mV more positive and 1.7 times that of flat Fe–N–S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe–N<sub>3</sub>S<sub>1</sub> sites into Fe–N<sub>3</sub> sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01783-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Deciphering Local Microstrain-Induced Optimization of Asymmetric Fe Single Atomic Sites for Efficient Oxygen Reduction\",\"authors\":\"Peng Zhang, Siying Huang, Kuo Chen, Xiaoqi Liu, Yachao Xu, Yongming Chai, Yunqi Liu, Yuan Pan\",\"doi\":\"10.1007/s40820-025-01783-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe–N<sub>3</sub>S<sub>1</sub>) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe–N bonds and 1.5% tensile strain to Fe–S bonds, downshifting the <i>d</i>-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe–N<sub>3</sub>S<sub>1</sub> sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e<sup>−1</sup> s<sup>−1</sup> site<sup>−1</sup>, which are 53 mV more positive and 1.7 times that of flat Fe–N–S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe–N<sub>3</sub>S<sub>1</sub> sites into Fe–N<sub>3</sub> sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01783-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01783-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01783-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Deciphering Local Microstrain-Induced Optimization of Asymmetric Fe Single Atomic Sites for Efficient Oxygen Reduction
Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe–N3S1) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe–N bonds and 1.5% tensile strain to Fe–S bonds, downshifting the d-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe–N3S1 sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e−1 s−1 site−1, which are 53 mV more positive and 1.7 times that of flat Fe–N–S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe–N3S1 sites into Fe–N3 sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.