电动汽车智能充电机器人调度:深度强化学习方法

IF 8.3 1区 工程技术 Q1 ECONOMICS
Yi Ding , Ming Deng , Ginger Y. Ke , Yingjun Shen , Lianmin Zhang
{"title":"电动汽车智能充电机器人调度:深度强化学习方法","authors":"Yi Ding ,&nbsp;Ming Deng ,&nbsp;Ginger Y. Ke ,&nbsp;Yingjun Shen ,&nbsp;Lianmin Zhang","doi":"10.1016/j.tre.2025.104090","DOIUrl":null,"url":null,"abstract":"<div><div>The surge in popularity of electric vehicles (EVs) has created a need for adaptable and flexible charging infrastructure. Intelligent Charging Robots (ICRs) have emerged as a promising solution to overcome issues faced by fixed charging stations, such as insufficient coverage, station occupancy, spatial constraints, and strain on the power grid. Nonetheless, optimizing the operational efficiency of ICRs presents a significant challenge. This study focuses on optimizing the scheduling of ICRs in a public parking facility through Deep Reinforcement Learning (DRL) methods. We first introduce the Intelligent Charging Robots Scheduling Problem (ICRSP) that maximizes either the number of EVs served (MN) or the total output electricity of ICRs (ME), and establish the corresponding mathematical model. Then, a DRL framework based on the Transformer structure is proposed to tackle ICRSP by integrating decisions of ICR assignment and EV sequencing to enhance solution quality. Furthermore, we devise a masking mechanism in the decoder to manage ICRs’ self-charging behavior during the charging service. Finally, experimental results validate the effectiveness of the proposed DRL approach in providing efficient scheduling solutions for large-scale ICRSP instances. The comparative analysis of MN-ICRSP and ME-ICRSP models offers valuable insights for ICRs operation scheduling, aiding in balancing operator revenue and customer satisfaction.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"200 ","pages":"Article 104090"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling intelligent charging robots for electric vehicle: A deep reinforcement learning approach\",\"authors\":\"Yi Ding ,&nbsp;Ming Deng ,&nbsp;Ginger Y. Ke ,&nbsp;Yingjun Shen ,&nbsp;Lianmin Zhang\",\"doi\":\"10.1016/j.tre.2025.104090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surge in popularity of electric vehicles (EVs) has created a need for adaptable and flexible charging infrastructure. Intelligent Charging Robots (ICRs) have emerged as a promising solution to overcome issues faced by fixed charging stations, such as insufficient coverage, station occupancy, spatial constraints, and strain on the power grid. Nonetheless, optimizing the operational efficiency of ICRs presents a significant challenge. This study focuses on optimizing the scheduling of ICRs in a public parking facility through Deep Reinforcement Learning (DRL) methods. We first introduce the Intelligent Charging Robots Scheduling Problem (ICRSP) that maximizes either the number of EVs served (MN) or the total output electricity of ICRs (ME), and establish the corresponding mathematical model. Then, a DRL framework based on the Transformer structure is proposed to tackle ICRSP by integrating decisions of ICR assignment and EV sequencing to enhance solution quality. Furthermore, we devise a masking mechanism in the decoder to manage ICRs’ self-charging behavior during the charging service. Finally, experimental results validate the effectiveness of the proposed DRL approach in providing efficient scheduling solutions for large-scale ICRSP instances. The comparative analysis of MN-ICRSP and ME-ICRSP models offers valuable insights for ICRs operation scheduling, aiding in balancing operator revenue and customer satisfaction.</div></div>\",\"PeriodicalId\":49418,\"journal\":{\"name\":\"Transportation Research Part E-Logistics and Transportation Review\",\"volume\":\"200 \",\"pages\":\"Article 104090\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part E-Logistics and Transportation Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1366554525001310\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554525001310","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

随着电动汽车(ev)的普及,对适应性强、灵活的充电基础设施产生了需求。智能充电机器人(ICRs)已经成为克服固定充电站面临的问题的一个有希望的解决方案,例如覆盖范围不足、充电站占用、空间限制和电网紧张。然而,优化icr的运行效率是一项重大挑战。本研究的重点是通过深度强化学习(DRL)方法优化公共停车设施icr的调度。本文首先引入了智能充电机器人调度问题(ICRSP),该问题的目标是实现电动汽车服务数量(MN)和智能充电机器人总输出电量(ME)的最大化,并建立了相应的数学模型。然后,提出了一个基于Transformer结构的DRL框架,通过整合ICR分配决策和EV排序决策来解决ICRSP问题,以提高解决方案的质量。此外,我们在解码器中设计了一个屏蔽机制来管理ICRs在充电服务期间的自充电行为。最后,实验结果验证了该方法的有效性,为大规模ICRSP实例提供了高效的调度解决方案。MN-ICRSP和ME-ICRSP模型的对比分析为ICRs作业计划提供了有价值的见解,有助于平衡运营商收入和客户满意度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling intelligent charging robots for electric vehicle: A deep reinforcement learning approach
The surge in popularity of electric vehicles (EVs) has created a need for adaptable and flexible charging infrastructure. Intelligent Charging Robots (ICRs) have emerged as a promising solution to overcome issues faced by fixed charging stations, such as insufficient coverage, station occupancy, spatial constraints, and strain on the power grid. Nonetheless, optimizing the operational efficiency of ICRs presents a significant challenge. This study focuses on optimizing the scheduling of ICRs in a public parking facility through Deep Reinforcement Learning (DRL) methods. We first introduce the Intelligent Charging Robots Scheduling Problem (ICRSP) that maximizes either the number of EVs served (MN) or the total output electricity of ICRs (ME), and establish the corresponding mathematical model. Then, a DRL framework based on the Transformer structure is proposed to tackle ICRSP by integrating decisions of ICR assignment and EV sequencing to enhance solution quality. Furthermore, we devise a masking mechanism in the decoder to manage ICRs’ self-charging behavior during the charging service. Finally, experimental results validate the effectiveness of the proposed DRL approach in providing efficient scheduling solutions for large-scale ICRSP instances. The comparative analysis of MN-ICRSP and ME-ICRSP models offers valuable insights for ICRs operation scheduling, aiding in balancing operator revenue and customer satisfaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信