Andres Felipe Cotrino Herrera , Jesús Alfonso López Sotelo , Juan Carlos Blandón Andrade , Alonso Toro Lazo
{"title":"使用Tiny ML通过振动分析进行轴承故障检测的低成本原型","authors":"Andres Felipe Cotrino Herrera , Jesús Alfonso López Sotelo , Juan Carlos Blandón Andrade , Alonso Toro Lazo","doi":"10.1016/j.ohx.2025.e00658","DOIUrl":null,"url":null,"abstract":"<div><div>The document presents a low-cost, open-source device designed to facilitate the learning of technologies like artificial intelligence in embedded systems through vibration analysis. It also aims to enhance students’ skills by introducing industrial challenges into the classroom via a scaled-down prototype. This study analyzes the vibrations generated by bearings to classify, using Artificial Intelligence (AI), whether they are defective. The device integrates electronic, mechanical, and software components, leveraging online technologies and platforms like Arduino to support hands-on learning. The document provides detailed instructions on the components used, circuit connections, step-by-step construction, and implementation, allowing replication of the prototype. This device fosters the development of STEM skills, promotes the application of AI and TinyML in real-world contexts, and enriches educational programs by encouraging interdisciplinary learning.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"22 ","pages":"Article e00658"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cost prototype for bearing failure detection using Tiny ML through vibration analysis\",\"authors\":\"Andres Felipe Cotrino Herrera , Jesús Alfonso López Sotelo , Juan Carlos Blandón Andrade , Alonso Toro Lazo\",\"doi\":\"10.1016/j.ohx.2025.e00658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The document presents a low-cost, open-source device designed to facilitate the learning of technologies like artificial intelligence in embedded systems through vibration analysis. It also aims to enhance students’ skills by introducing industrial challenges into the classroom via a scaled-down prototype. This study analyzes the vibrations generated by bearings to classify, using Artificial Intelligence (AI), whether they are defective. The device integrates electronic, mechanical, and software components, leveraging online technologies and platforms like Arduino to support hands-on learning. The document provides detailed instructions on the components used, circuit connections, step-by-step construction, and implementation, allowing replication of the prototype. This device fosters the development of STEM skills, promotes the application of AI and TinyML in real-world contexts, and enriches educational programs by encouraging interdisciplinary learning.</div></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"22 \",\"pages\":\"Article e00658\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067225000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Low-cost prototype for bearing failure detection using Tiny ML through vibration analysis
The document presents a low-cost, open-source device designed to facilitate the learning of technologies like artificial intelligence in embedded systems through vibration analysis. It also aims to enhance students’ skills by introducing industrial challenges into the classroom via a scaled-down prototype. This study analyzes the vibrations generated by bearings to classify, using Artificial Intelligence (AI), whether they are defective. The device integrates electronic, mechanical, and software components, leveraging online technologies and platforms like Arduino to support hands-on learning. The document provides detailed instructions on the components used, circuit connections, step-by-step construction, and implementation, allowing replication of the prototype. This device fosters the development of STEM skills, promotes the application of AI and TinyML in real-world contexts, and enriches educational programs by encouraging interdisciplinary learning.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.