Charlotte H. Clubley , Antony M. Knights , Jessica Allen , David T. Bilton , Andy Foggo , Mick E. Hanley , James Murphy , Louisa E. Wood , Louise B. Firth
{"title":"扩大生态工程:地形复杂性和空间变异性在塑造海岸结构生物多样性中的作用","authors":"Charlotte H. Clubley , Antony M. Knights , Jessica Allen , David T. Bilton , Andy Foggo , Mick E. Hanley , James Murphy , Louisa E. Wood , Louise B. Firth","doi":"10.1016/j.scitotenv.2025.179738","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the depauperate biodiversity often associated with the largely homogenous surfaces of artificial structures, ecological (eco-) engineering has emerged as a tool to introduce topographic complexity to coastal development. Although relatively small-scale studies using topographically complex panels and artificial rockpools are commonplace, determining how the configuration of these interventions works over greater and more realistic spatial scales has received comparatively little attention. Given the importance of spatial variability in habitat complexity for shaping community composition and, therefore, regional diversity, filling this knowledge gap is key to enhancing the ‘design catalogue’ for future eco-engineering installations. Here, we manipulated topographic complexity using individual concrete panels placed into larger arrays to generate two different spatial configurations, and in doing so explore the potentially interactive roles of small-scale panel complexity and larger-scale variability on biodiversity. More topographically complex panels supported greater taxon richness and abundance than low complexity panels, whilst the complexity of the panels in interaction with their spatial arrangement within larger arrays influenced community composition between treatment groups. Our results corroborate studies showing how small-scale variation in surface topography benefits biodiversity, but we also demonstrate that spatial variability in how this complexity is deployed over larger areas impacts community composition. These effects were especially evident for the invasive non-native species that frequently colonise and dominate newly engineered coastal structures, often at the expense of natives. Given the ongoing expansion of coastal infrastructure, studies such as this that explore means of ‘scaling up’ eco-engineering to better represent the inherent spatial variability of natural habitats are essential to achieving biodiversity comparable to, and potentially greater than, these habitats.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"985 ","pages":"Article 179738"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling up eco-engineering: The role of topographic complexity and spatial variability in shaping biodiversity on coastal structures\",\"authors\":\"Charlotte H. Clubley , Antony M. Knights , Jessica Allen , David T. Bilton , Andy Foggo , Mick E. Hanley , James Murphy , Louisa E. Wood , Louise B. Firth\",\"doi\":\"10.1016/j.scitotenv.2025.179738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the depauperate biodiversity often associated with the largely homogenous surfaces of artificial structures, ecological (eco-) engineering has emerged as a tool to introduce topographic complexity to coastal development. Although relatively small-scale studies using topographically complex panels and artificial rockpools are commonplace, determining how the configuration of these interventions works over greater and more realistic spatial scales has received comparatively little attention. Given the importance of spatial variability in habitat complexity for shaping community composition and, therefore, regional diversity, filling this knowledge gap is key to enhancing the ‘design catalogue’ for future eco-engineering installations. Here, we manipulated topographic complexity using individual concrete panels placed into larger arrays to generate two different spatial configurations, and in doing so explore the potentially interactive roles of small-scale panel complexity and larger-scale variability on biodiversity. More topographically complex panels supported greater taxon richness and abundance than low complexity panels, whilst the complexity of the panels in interaction with their spatial arrangement within larger arrays influenced community composition between treatment groups. Our results corroborate studies showing how small-scale variation in surface topography benefits biodiversity, but we also demonstrate that spatial variability in how this complexity is deployed over larger areas impacts community composition. These effects were especially evident for the invasive non-native species that frequently colonise and dominate newly engineered coastal structures, often at the expense of natives. Given the ongoing expansion of coastal infrastructure, studies such as this that explore means of ‘scaling up’ eco-engineering to better represent the inherent spatial variability of natural habitats are essential to achieving biodiversity comparable to, and potentially greater than, these habitats.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"985 \",\"pages\":\"Article 179738\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725013798\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725013798","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Scaling up eco-engineering: The role of topographic complexity and spatial variability in shaping biodiversity on coastal structures
In response to the depauperate biodiversity often associated with the largely homogenous surfaces of artificial structures, ecological (eco-) engineering has emerged as a tool to introduce topographic complexity to coastal development. Although relatively small-scale studies using topographically complex panels and artificial rockpools are commonplace, determining how the configuration of these interventions works over greater and more realistic spatial scales has received comparatively little attention. Given the importance of spatial variability in habitat complexity for shaping community composition and, therefore, regional diversity, filling this knowledge gap is key to enhancing the ‘design catalogue’ for future eco-engineering installations. Here, we manipulated topographic complexity using individual concrete panels placed into larger arrays to generate two different spatial configurations, and in doing so explore the potentially interactive roles of small-scale panel complexity and larger-scale variability on biodiversity. More topographically complex panels supported greater taxon richness and abundance than low complexity panels, whilst the complexity of the panels in interaction with their spatial arrangement within larger arrays influenced community composition between treatment groups. Our results corroborate studies showing how small-scale variation in surface topography benefits biodiversity, but we also demonstrate that spatial variability in how this complexity is deployed over larger areas impacts community composition. These effects were especially evident for the invasive non-native species that frequently colonise and dominate newly engineered coastal structures, often at the expense of natives. Given the ongoing expansion of coastal infrastructure, studies such as this that explore means of ‘scaling up’ eco-engineering to better represent the inherent spatial variability of natural habitats are essential to achieving biodiversity comparable to, and potentially greater than, these habitats.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.