基于动态纳米流体光谱分裂的新型玻璃温室屋顶隔热集热性能实验分析

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Tao Li , Jiangqiaoyu Ma , Shaolong Shi , Xiangyu Liu , Junyong Yu , Yanglun Wang , Yuan Yuan , Qianjun Mao
{"title":"基于动态纳米流体光谱分裂的新型玻璃温室屋顶隔热集热性能实验分析","authors":"Tao Li ,&nbsp;Jiangqiaoyu Ma ,&nbsp;Shaolong Shi ,&nbsp;Xiangyu Liu ,&nbsp;Junyong Yu ,&nbsp;Yanglun Wang ,&nbsp;Yuan Yuan ,&nbsp;Qianjun Mao","doi":"10.1016/j.renene.2025.123511","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce high indoor temperatures in glass greenhouses during summer, a dynamic nanofluid spectral splitter (DNSS) roof was designed. This system uses a nanofluid that absorbs heat, which is collected by an external circulation device. It helps cool the greenhouse and utilize solar heat. A stable CWO@TiO<sub>2</sub> composite nanofluid with a 50 ppm concentration was prepared, showing a near-infrared shielding rate of 77.08 % and a visible light transmittance of 62.41 %. The DNSS roof system, with three different thicknesses, was tested for thermal insulation and heat collection. Compared to a 10 mm air roof, the 10 mm DNSS roof achieved a cooling effect of 16.90 °C and a heat collection rate of 732 W/m<sup>2</sup>. The average temperature drop for the 5 mm, 10 mm, and 15 mm thick roofs was 8.27 °C, 11.24 °C, and 9.27 °C, with daily heat gains of 81.48 MJ, 95.66 MJ, and 97.33 MJ, respectively. The 10 mm single-slope DNSS roof had a solar heat conversion rate of 46.1 %. This cost-effective roof system provides insights for addressing high temperatures in glass greenhouses.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"252 ","pages":"Article 123511"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis of thermal insulation and heat collection performance of a novel roof based on dynamic nanofluid spectral splitting in the glass greenhouse\",\"authors\":\"Tao Li ,&nbsp;Jiangqiaoyu Ma ,&nbsp;Shaolong Shi ,&nbsp;Xiangyu Liu ,&nbsp;Junyong Yu ,&nbsp;Yanglun Wang ,&nbsp;Yuan Yuan ,&nbsp;Qianjun Mao\",\"doi\":\"10.1016/j.renene.2025.123511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To reduce high indoor temperatures in glass greenhouses during summer, a dynamic nanofluid spectral splitter (DNSS) roof was designed. This system uses a nanofluid that absorbs heat, which is collected by an external circulation device. It helps cool the greenhouse and utilize solar heat. A stable CWO@TiO<sub>2</sub> composite nanofluid with a 50 ppm concentration was prepared, showing a near-infrared shielding rate of 77.08 % and a visible light transmittance of 62.41 %. The DNSS roof system, with three different thicknesses, was tested for thermal insulation and heat collection. Compared to a 10 mm air roof, the 10 mm DNSS roof achieved a cooling effect of 16.90 °C and a heat collection rate of 732 W/m<sup>2</sup>. The average temperature drop for the 5 mm, 10 mm, and 15 mm thick roofs was 8.27 °C, 11.24 °C, and 9.27 °C, with daily heat gains of 81.48 MJ, 95.66 MJ, and 97.33 MJ, respectively. The 10 mm single-slope DNSS roof had a solar heat conversion rate of 46.1 %. This cost-effective roof system provides insights for addressing high temperatures in glass greenhouses.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"252 \",\"pages\":\"Article 123511\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148125011735\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125011735","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了降低玻璃温室夏季室内高温,设计了动态纳米流体分光器(DNSS)屋顶。该系统使用一种吸收热量的纳米流体,通过外部循环装置收集热量。它有助于冷却温室并利用太阳能。制备了一种稳定的CWO@TiO2复合纳米流体,其近红外屏蔽率为77.08%,可见光透过率为62.41%。采用三种不同厚度的DNSS屋顶系统进行了隔热和集热测试。与10毫米空气屋顶相比,10毫米DNSS屋顶的冷却效果为16.90°C,集热率为732 W/m2。5 mm、10 mm和15 mm屋面的平均降温幅度分别为8.27℃、11.24℃和9.27℃,日吸热量分别为81.48、95.66和97.33 MJ。10mm单坡DNSS屋顶的太阳能热转换率为46.1%。这种具有成本效益的屋顶系统为解决玻璃温室的高温问题提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental analysis of thermal insulation and heat collection performance of a novel roof based on dynamic nanofluid spectral splitting in the glass greenhouse
To reduce high indoor temperatures in glass greenhouses during summer, a dynamic nanofluid spectral splitter (DNSS) roof was designed. This system uses a nanofluid that absorbs heat, which is collected by an external circulation device. It helps cool the greenhouse and utilize solar heat. A stable CWO@TiO2 composite nanofluid with a 50 ppm concentration was prepared, showing a near-infrared shielding rate of 77.08 % and a visible light transmittance of 62.41 %. The DNSS roof system, with three different thicknesses, was tested for thermal insulation and heat collection. Compared to a 10 mm air roof, the 10 mm DNSS roof achieved a cooling effect of 16.90 °C and a heat collection rate of 732 W/m2. The average temperature drop for the 5 mm, 10 mm, and 15 mm thick roofs was 8.27 °C, 11.24 °C, and 9.27 °C, with daily heat gains of 81.48 MJ, 95.66 MJ, and 97.33 MJ, respectively. The 10 mm single-slope DNSS roof had a solar heat conversion rate of 46.1 %. This cost-effective roof system provides insights for addressing high temperatures in glass greenhouses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信