基于加权自适应主动迁移学习的建筑工地图像不平衡多目标分类

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Karunakar Reddy Mannem , Samuel A. Prieto , Borja García de Soto , Fernando Bacao
{"title":"基于加权自适应主动迁移学习的建筑工地图像不平衡多目标分类","authors":"Karunakar Reddy Mannem ,&nbsp;Samuel A. Prieto ,&nbsp;Borja García de Soto ,&nbsp;Fernando Bacao","doi":"10.1016/j.autcon.2025.106297","DOIUrl":null,"url":null,"abstract":"<div><div>Construction site monitoring relies on robust image classification to enhance safety, track progress, and optimize resource management. However, the amount of clutter and the high cost of manual labeling pose significant challenges. This paper presents an approach to multi-object classification in construction sites using Adaptive Active Transfer Learning. The Weighted Active Transfer Learning with Adaptive Sampling (WATLAS) framework is introduced, where Transfer Learning is combined with weighted Active Learning to efficiently classify diverse objects. A pre-trained InceptionV3 architecture integrated with bidirectional long short-term memory (BiLSTM) layers is utilized, and superior performance is achieved through adaptive sampling techniques compared to traditional methods. WATLAS achieves 97 % accuracy on a comprehensive dataset of 9344 construction site images spanning 15 object categories and maintaining 90 % accuracy with only 5 % labeled data. By optimizing performance metrics, the framework demonstrates significant improvements over traditional methods, making it a scalable solution for construction site monitoring.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"176 ","pages":"Article 106297"},"PeriodicalIF":11.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted adaptive active transfer learning for imbalanced multi-object classification in construction site imagery\",\"authors\":\"Karunakar Reddy Mannem ,&nbsp;Samuel A. Prieto ,&nbsp;Borja García de Soto ,&nbsp;Fernando Bacao\",\"doi\":\"10.1016/j.autcon.2025.106297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Construction site monitoring relies on robust image classification to enhance safety, track progress, and optimize resource management. However, the amount of clutter and the high cost of manual labeling pose significant challenges. This paper presents an approach to multi-object classification in construction sites using Adaptive Active Transfer Learning. The Weighted Active Transfer Learning with Adaptive Sampling (WATLAS) framework is introduced, where Transfer Learning is combined with weighted Active Learning to efficiently classify diverse objects. A pre-trained InceptionV3 architecture integrated with bidirectional long short-term memory (BiLSTM) layers is utilized, and superior performance is achieved through adaptive sampling techniques compared to traditional methods. WATLAS achieves 97 % accuracy on a comprehensive dataset of 9344 construction site images spanning 15 object categories and maintaining 90 % accuracy with only 5 % labeled data. By optimizing performance metrics, the framework demonstrates significant improvements over traditional methods, making it a scalable solution for construction site monitoring.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"176 \",\"pages\":\"Article 106297\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525003371\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525003371","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

施工现场监控依靠强大的图像分类来提高安全性,跟踪进度,优化资源管理。然而,大量的杂乱和人工标签的高成本构成了重大挑战。提出了一种基于自适应主动迁移学习的建筑工地多目标分类方法。引入自适应采样加权主动迁移学习(WATLAS)框架,将迁移学习与加权主动学习相结合,实现对不同目标的有效分类。利用预先训练的集成了双向长短期记忆(BiLSTM)层的InceptionV3架构,通过自适应采样技术实现了优于传统方法的性能。WATLAS在涵盖15个对象类别的9344个建筑工地图像的综合数据集上实现了97%的准确率,并且仅使用5%的标记数据就保持了90%的准确率。通过优化性能指标,该框架比传统方法有了显著改进,使其成为建筑工地监控的可扩展解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted adaptive active transfer learning for imbalanced multi-object classification in construction site imagery
Construction site monitoring relies on robust image classification to enhance safety, track progress, and optimize resource management. However, the amount of clutter and the high cost of manual labeling pose significant challenges. This paper presents an approach to multi-object classification in construction sites using Adaptive Active Transfer Learning. The Weighted Active Transfer Learning with Adaptive Sampling (WATLAS) framework is introduced, where Transfer Learning is combined with weighted Active Learning to efficiently classify diverse objects. A pre-trained InceptionV3 architecture integrated with bidirectional long short-term memory (BiLSTM) layers is utilized, and superior performance is achieved through adaptive sampling techniques compared to traditional methods. WATLAS achieves 97 % accuracy on a comprehensive dataset of 9344 construction site images spanning 15 object categories and maintaining 90 % accuracy with only 5 % labeled data. By optimizing performance metrics, the framework demonstrates significant improvements over traditional methods, making it a scalable solution for construction site monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信