铜电溶的不可积性

IF 1.2 3区 数学 Q1 MATHEMATICS
Azad Ibrahim Amen , Jihan Mustafa Mirkhan
{"title":"铜电溶的不可积性","authors":"Azad Ibrahim Amen ,&nbsp;Jihan Mustafa Mirkhan","doi":"10.1016/j.jmaa.2025.129696","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate integrability of three-dimensional systems for the copper electro-dissolution model, which are expressed as nonlinear ordinary differential equations<span><span><span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Y</mi><mo>,</mo><mover><mrow><mi>Y</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Z</mi><mo>,</mo><mover><mrow><mi>Z</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>Z</mi><mo>−</mo><mi>μ</mi><mi>X</mi><mo>−</mo><mn>1.3</mn><mi>Y</mi><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1.425</mn><msup><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>0.2</mn><mi>X</mi><mi>Z</mi><mo>−</mo><mn>0.01</mn><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Z</mi><mo>.</mo></math></span></span></span> Where <span><math><mi>X</mi><mo>,</mo><mi>Y</mi></math></span> and <em>Z</em> represent chemical concentrations, and <em>μ</em> is a real parameter. More precisely, we prove: first that the system has no polynomial, rational and Darboux first integrals and second that the system has no analytic first integrals in a neighborhood at the origin when <span><math><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>10</mn></mrow></mfrac><mo>]</mo></math></span> or <span><math><mi>μ</mi><mo>≠</mo><mfrac><mrow><mo>(</mo><mn>13</mn><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>16</mn><mspace></mspace><mi>n</mi><mo>+</mo><mn>13</mn><mo>)</mo><mspace></mspace><mi>n</mi></mrow><mrow><mn>10</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac></math></span> where <span><math><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> as well as in a neighborhood at the equilibrium point <span><math><mo>(</mo><mi>μ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> when <span><math><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>370</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mo>±</mo><mfrac><mrow><mn>200</mn><mspace></mspace><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>13</mn></mrow></mfrac></math></span> or <span><math><mi>μ</mi><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><mfrac><mrow><mn>13</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>μ</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>1000</mn></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>&gt;</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129696"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the non-integrability of the electro-dissolution of copper\",\"authors\":\"Azad Ibrahim Amen ,&nbsp;Jihan Mustafa Mirkhan\",\"doi\":\"10.1016/j.jmaa.2025.129696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we investigate integrability of three-dimensional systems for the copper electro-dissolution model, which are expressed as nonlinear ordinary differential equations<span><span><span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Y</mi><mo>,</mo><mover><mrow><mi>Y</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Z</mi><mo>,</mo><mover><mrow><mi>Z</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>Z</mi><mo>−</mo><mi>μ</mi><mi>X</mi><mo>−</mo><mn>1.3</mn><mi>Y</mi><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1.425</mn><msup><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>0.2</mn><mi>X</mi><mi>Z</mi><mo>−</mo><mn>0.01</mn><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Z</mi><mo>.</mo></math></span></span></span> Where <span><math><mi>X</mi><mo>,</mo><mi>Y</mi></math></span> and <em>Z</em> represent chemical concentrations, and <em>μ</em> is a real parameter. More precisely, we prove: first that the system has no polynomial, rational and Darboux first integrals and second that the system has no analytic first integrals in a neighborhood at the origin when <span><math><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>10</mn></mrow></mfrac><mo>]</mo></math></span> or <span><math><mi>μ</mi><mo>≠</mo><mfrac><mrow><mo>(</mo><mn>13</mn><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>16</mn><mspace></mspace><mi>n</mi><mo>+</mo><mn>13</mn><mo>)</mo><mspace></mspace><mi>n</mi></mrow><mrow><mn>10</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac></math></span> where <span><math><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> as well as in a neighborhood at the equilibrium point <span><math><mo>(</mo><mi>μ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> when <span><math><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>370</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mo>±</mo><mfrac><mrow><mn>200</mn><mspace></mspace><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>13</mn></mrow></mfrac></math></span> or <span><math><mi>μ</mi><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><mfrac><mrow><mn>13</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>μ</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>1000</mn></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>&gt;</mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129696\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004779\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004779","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了铜电溶模型三维系统的可积性,该系统用非线性常微分方程x˙=Y,Y˙=Z,Z˙=−Z−μX−1.3Y+X2−1.425Y2+0.2XZ−0.01X2Z表示。其中,X、Y和Z表示化学物质浓度,μ为实参数。更确切地说,我们证明了:首先,系统没有多项式、有理和达布第一积分;其次,当μ∈[0,1310]或μ≠(13n2+16n+13)n10(n+1)3且n∈Z∈{0}时,系统在原点的邻域内没有解析第一积分;当μ=37013±200313或μ<;0和13(μ−10)21000+μ>;0时,系统在平衡点(μ,0,0)的邻域内没有解析第一积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the non-integrability of the electro-dissolution of copper
In this work, we investigate integrability of three-dimensional systems for the copper electro-dissolution model, which are expressed as nonlinear ordinary differential equationsX˙=Y,Y˙=Z,Z˙=ZμX1.3Y+X21.425Y2+0.2XZ0.01X2Z. Where X,Y and Z represent chemical concentrations, and μ is a real parameter. More precisely, we prove: first that the system has no polynomial, rational and Darboux first integrals and second that the system has no analytic first integrals in a neighborhood at the origin when μ[0,1310] or μ(13n2+16n+13)n10(n+1)3 where nZ{0} as well as in a neighborhood at the equilibrium point (μ,0,0) when μ=37013±200313 or μ<0 and 13(μ10)21000+μ>0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信