{"title":"铜电溶的不可积性","authors":"Azad Ibrahim Amen , Jihan Mustafa Mirkhan","doi":"10.1016/j.jmaa.2025.129696","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate integrability of three-dimensional systems for the copper electro-dissolution model, which are expressed as nonlinear ordinary differential equations<span><span><span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Y</mi><mo>,</mo><mover><mrow><mi>Y</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Z</mi><mo>,</mo><mover><mrow><mi>Z</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>Z</mi><mo>−</mo><mi>μ</mi><mi>X</mi><mo>−</mo><mn>1.3</mn><mi>Y</mi><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1.425</mn><msup><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>0.2</mn><mi>X</mi><mi>Z</mi><mo>−</mo><mn>0.01</mn><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Z</mi><mo>.</mo></math></span></span></span> Where <span><math><mi>X</mi><mo>,</mo><mi>Y</mi></math></span> and <em>Z</em> represent chemical concentrations, and <em>μ</em> is a real parameter. More precisely, we prove: first that the system has no polynomial, rational and Darboux first integrals and second that the system has no analytic first integrals in a neighborhood at the origin when <span><math><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>10</mn></mrow></mfrac><mo>]</mo></math></span> or <span><math><mi>μ</mi><mo>≠</mo><mfrac><mrow><mo>(</mo><mn>13</mn><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>16</mn><mspace></mspace><mi>n</mi><mo>+</mo><mn>13</mn><mo>)</mo><mspace></mspace><mi>n</mi></mrow><mrow><mn>10</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac></math></span> where <span><math><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> as well as in a neighborhood at the equilibrium point <span><math><mo>(</mo><mi>μ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> when <span><math><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>370</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mo>±</mo><mfrac><mrow><mn>200</mn><mspace></mspace><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>13</mn></mrow></mfrac></math></span> or <span><math><mi>μ</mi><mo><</mo><mn>0</mn></math></span> and <span><math><mfrac><mrow><mn>13</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>μ</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>1000</mn></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>></mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129696"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the non-integrability of the electro-dissolution of copper\",\"authors\":\"Azad Ibrahim Amen , Jihan Mustafa Mirkhan\",\"doi\":\"10.1016/j.jmaa.2025.129696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we investigate integrability of three-dimensional systems for the copper electro-dissolution model, which are expressed as nonlinear ordinary differential equations<span><span><span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Y</mi><mo>,</mo><mover><mrow><mi>Y</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>Z</mi><mo>,</mo><mover><mrow><mi>Z</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>Z</mi><mo>−</mo><mi>μ</mi><mi>X</mi><mo>−</mo><mn>1.3</mn><mi>Y</mi><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1.425</mn><msup><mrow><mi>Y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>0.2</mn><mi>X</mi><mi>Z</mi><mo>−</mo><mn>0.01</mn><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Z</mi><mo>.</mo></math></span></span></span> Where <span><math><mi>X</mi><mo>,</mo><mi>Y</mi></math></span> and <em>Z</em> represent chemical concentrations, and <em>μ</em> is a real parameter. More precisely, we prove: first that the system has no polynomial, rational and Darboux first integrals and second that the system has no analytic first integrals in a neighborhood at the origin when <span><math><mi>μ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>10</mn></mrow></mfrac><mo>]</mo></math></span> or <span><math><mi>μ</mi><mo>≠</mo><mfrac><mrow><mo>(</mo><mn>13</mn><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>16</mn><mspace></mspace><mi>n</mi><mo>+</mo><mn>13</mn><mo>)</mo><mspace></mspace><mi>n</mi></mrow><mrow><mn>10</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac></math></span> where <span><math><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> as well as in a neighborhood at the equilibrium point <span><math><mo>(</mo><mi>μ</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> when <span><math><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>370</mn></mrow><mrow><mn>13</mn></mrow></mfrac><mo>±</mo><mfrac><mrow><mn>200</mn><mspace></mspace><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>13</mn></mrow></mfrac></math></span> or <span><math><mi>μ</mi><mo><</mo><mn>0</mn></math></span> and <span><math><mfrac><mrow><mn>13</mn><mspace></mspace><msup><mrow><mo>(</mo><mi>μ</mi><mo>−</mo><mn>10</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>1000</mn></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>></mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129696\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004779\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004779","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the non-integrability of the electro-dissolution of copper
In this work, we investigate integrability of three-dimensional systems for the copper electro-dissolution model, which are expressed as nonlinear ordinary differential equations Where and Z represent chemical concentrations, and μ is a real parameter. More precisely, we prove: first that the system has no polynomial, rational and Darboux first integrals and second that the system has no analytic first integrals in a neighborhood at the origin when or where as well as in a neighborhood at the equilibrium point when or and .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.