聚焦测量修正三格KdV方程超椭圆解的闭实平面曲线

IF 1.2 3区 数学 Q1 MATHEMATICS
Shigeki Matsutani
{"title":"聚焦测量修正三格KdV方程超椭圆解的闭实平面曲线","authors":"Shigeki Matsutani","doi":"10.1016/j.geomphys.2025.105540","DOIUrl":null,"url":null,"abstract":"<div><div>The real and imaginary parts of the focusing modified Korteweg-de Vries (MKdV) equation defined over the complex field <span><math><mi>C</mi></math></span> give rise to the focusing gauged MKdV (FGMKdV) equations. As a generalization of Euler's elastica whose curvature obeys the focusing static MKdV (FSMKdV) equation, we study real plane curves whose curvature obeys the FGMKdV equation since the FSMKdV equation is a special case of the FGMKdV equation. In this paper, we focus on the hyperelliptic curves of genus three. By tuning some moduli parameters and initial conditions, we show closed real plane curves associated with the FGMKdV equation beyond Euler's figure-eight of elastica.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105540"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed real plane curves of hyperelliptic solutions of focusing gauged modified KdV equation of genus three\",\"authors\":\"Shigeki Matsutani\",\"doi\":\"10.1016/j.geomphys.2025.105540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The real and imaginary parts of the focusing modified Korteweg-de Vries (MKdV) equation defined over the complex field <span><math><mi>C</mi></math></span> give rise to the focusing gauged MKdV (FGMKdV) equations. As a generalization of Euler's elastica whose curvature obeys the focusing static MKdV (FSMKdV) equation, we study real plane curves whose curvature obeys the FGMKdV equation since the FSMKdV equation is a special case of the FGMKdV equation. In this paper, we focus on the hyperelliptic curves of genus three. By tuning some moduli parameters and initial conditions, we show closed real plane curves associated with the FGMKdV equation beyond Euler's figure-eight of elastica.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"215 \",\"pages\":\"Article 105540\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S039304402500124X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S039304402500124X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在复场C上定义的聚焦修正Korteweg-de Vries (MKdV)方程的实部和虚部可得到聚焦测量MKdV (FGMKdV)方程。作为曲率服从聚焦静态MKdV (FSMKdV)方程的欧拉弹性曲线的推广,由于FSMKdV方程是FGMKdV方程的一种特例,我们研究了曲率服从FGMKdV方程的实际平面曲线。本文主要讨论了3属的超椭圆曲线。通过调整一些模参数和初始条件,我们显示了与FGMKdV方程相关的封闭实平面曲线,超出了弹性力学的欧拉数字8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed real plane curves of hyperelliptic solutions of focusing gauged modified KdV equation of genus three
The real and imaginary parts of the focusing modified Korteweg-de Vries (MKdV) equation defined over the complex field C give rise to the focusing gauged MKdV (FGMKdV) equations. As a generalization of Euler's elastica whose curvature obeys the focusing static MKdV (FSMKdV) equation, we study real plane curves whose curvature obeys the FGMKdV equation since the FSMKdV equation is a special case of the FGMKdV equation. In this paper, we focus on the hyperelliptic curves of genus three. By tuning some moduli parameters and initial conditions, we show closed real plane curves associated with the FGMKdV equation beyond Euler's figure-eight of elastica.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信