局部电流密度,温度和机械压力分布的分析在一个工作的PEMFC在可变压缩

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
El Mahdi Khetabi , Khadidja Bouziane , Xavier François , Remy Lachat , Yann Meyer , Denis Candusso
{"title":"局部电流密度,温度和机械压力分布的分析在一个工作的PEMFC在可变压缩","authors":"El Mahdi Khetabi ,&nbsp;Khadidja Bouziane ,&nbsp;Xavier François ,&nbsp;Remy Lachat ,&nbsp;Yann Meyer ,&nbsp;Denis Candusso","doi":"10.1016/j.apenergy.2025.126187","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the impact of mechanical compression on local phenomena within an operating PEMFC with a large active area (225 cm<sup>2</sup>). It explores the distributions of current density, temperature, and mechanical pressure, building on previous global characterisations (cell voltage, polarisation curves, and EIS). The study finds that mechanical compression (0.35–1.55 MPa) enhances the uniformity of current density and temperature distribution, reducing the risk of hotspots that can impair PEMFC performance and durability. The spatial analysis reveals that this homogenisation effect is mainly due to improved pressure distribution with increased compression. The regions with higher mechanical pressure correlate with higher local current density and temperature, which improves performance by reducing ohmic resistance. However, excessive compression at high current density and relative humidity can lead to water management issues. Overall, the results support the positive effect of pressure homogenisation on PEMFC performance, as observed in previous studies.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"394 ","pages":"Article 126187"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of local current density, temperature, and mechanical pressure distributions in an operating PEMFC under variable compression\",\"authors\":\"El Mahdi Khetabi ,&nbsp;Khadidja Bouziane ,&nbsp;Xavier François ,&nbsp;Remy Lachat ,&nbsp;Yann Meyer ,&nbsp;Denis Candusso\",\"doi\":\"10.1016/j.apenergy.2025.126187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates the impact of mechanical compression on local phenomena within an operating PEMFC with a large active area (225 cm<sup>2</sup>). It explores the distributions of current density, temperature, and mechanical pressure, building on previous global characterisations (cell voltage, polarisation curves, and EIS). The study finds that mechanical compression (0.35–1.55 MPa) enhances the uniformity of current density and temperature distribution, reducing the risk of hotspots that can impair PEMFC performance and durability. The spatial analysis reveals that this homogenisation effect is mainly due to improved pressure distribution with increased compression. The regions with higher mechanical pressure correlate with higher local current density and temperature, which improves performance by reducing ohmic resistance. However, excessive compression at high current density and relative humidity can lead to water management issues. Overall, the results support the positive effect of pressure homogenisation on PEMFC performance, as observed in previous studies.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"394 \",\"pages\":\"Article 126187\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925009171\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925009171","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了机械压缩对工作中具有较大活动面积(225 cm2)的PEMFC局部现象的影响。它探讨了电流密度,温度和机械压力的分布,建立在以前的全局特征(电池电压,极化曲线和EIS)。研究发现,机械压缩(0.35-1.55 MPa)增强了电流密度和温度分布的均匀性,降低了影响PEMFC性能和耐用性的热点风险。空间分析表明,这种均匀化效应主要是由于压力分布随着压缩的增加而改善。具有较高机械压力的区域与较高的局部电流密度和温度相关,从而通过降低欧姆电阻来提高性能。然而,在高电流密度和相对湿度下过度压缩会导致水管理问题。总的来说,结果支持压力均质化对PEMFC性能的积极影响,正如之前的研究所观察到的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of local current density, temperature, and mechanical pressure distributions in an operating PEMFC under variable compression
This article investigates the impact of mechanical compression on local phenomena within an operating PEMFC with a large active area (225 cm2). It explores the distributions of current density, temperature, and mechanical pressure, building on previous global characterisations (cell voltage, polarisation curves, and EIS). The study finds that mechanical compression (0.35–1.55 MPa) enhances the uniformity of current density and temperature distribution, reducing the risk of hotspots that can impair PEMFC performance and durability. The spatial analysis reveals that this homogenisation effect is mainly due to improved pressure distribution with increased compression. The regions with higher mechanical pressure correlate with higher local current density and temperature, which improves performance by reducing ohmic resistance. However, excessive compression at high current density and relative humidity can lead to water management issues. Overall, the results support the positive effect of pressure homogenisation on PEMFC performance, as observed in previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信