凝聚膜相互作用形成膜,调整细胞骨架组装,并定位mrna

IF 4.3 2区 生物学 Q1 CELL BIOLOGY
Wilton T. Snead
{"title":"凝聚膜相互作用形成膜,调整细胞骨架组装,并定位mrna","authors":"Wilton T. Snead","doi":"10.1016/j.ceb.2025.102540","DOIUrl":null,"url":null,"abstract":"<div><div>Biomolecular condensates have emerged as essential subcellular compartments. Although condensates organize biochemistry without a delimiting membrane, condensates frequently interact with membrane surfaces in diverse cellular contexts. Condensates and membranes reciprocally modulate each other, inducing membrane shape changes, establishing domains of distinct lipid composition, and catalyzing reactions within condensates. Here I discuss recent advancements in our understanding of the condensate-membrane interface, with a focus on membrane shaping, lipid organization, cytoskeletal regulation, and mRNA transport. I conclude by suggesting research avenues that may uncover new functions for membrane-associated condensates, with emphasis on the understudied role of RNA in the condensate-membrane interface.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102540"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condensate-membrane interactions shape membranes, tune cytoskeletal assembly, and localize mRNAs\",\"authors\":\"Wilton T. Snead\",\"doi\":\"10.1016/j.ceb.2025.102540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomolecular condensates have emerged as essential subcellular compartments. Although condensates organize biochemistry without a delimiting membrane, condensates frequently interact with membrane surfaces in diverse cellular contexts. Condensates and membranes reciprocally modulate each other, inducing membrane shape changes, establishing domains of distinct lipid composition, and catalyzing reactions within condensates. Here I discuss recent advancements in our understanding of the condensate-membrane interface, with a focus on membrane shaping, lipid organization, cytoskeletal regulation, and mRNA transport. I conclude by suggesting research avenues that may uncover new functions for membrane-associated condensates, with emphasis on the understudied role of RNA in the condensate-membrane interface.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"95 \",\"pages\":\"Article 102540\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095506742500078X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095506742500078X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物分子凝聚体已成为亚细胞的重要组成部分。虽然冷凝物在没有分隔膜的情况下组织生物化学,但冷凝物在不同的细胞环境中经常与膜表面相互作用。冷凝物和膜相互调节,诱导膜形状改变,建立不同脂质组成的结构域,并催化冷凝物内的反应。在这里,我讨论了我们对凝聚物-膜界面的理解的最新进展,重点是膜形成,脂质组织,细胞骨架调节和mRNA运输。最后,我提出了可能揭示膜相关凝聚物新功能的研究途径,重点是RNA在凝聚物-膜界面中的未充分研究的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Condensate-membrane interactions shape membranes, tune cytoskeletal assembly, and localize mRNAs
Biomolecular condensates have emerged as essential subcellular compartments. Although condensates organize biochemistry without a delimiting membrane, condensates frequently interact with membrane surfaces in diverse cellular contexts. Condensates and membranes reciprocally modulate each other, inducing membrane shape changes, establishing domains of distinct lipid composition, and catalyzing reactions within condensates. Here I discuss recent advancements in our understanding of the condensate-membrane interface, with a focus on membrane shaping, lipid organization, cytoskeletal regulation, and mRNA transport. I conclude by suggesting research avenues that may uncover new functions for membrane-associated condensates, with emphasis on the understudied role of RNA in the condensate-membrane interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信