Huiwen Wang , Haixin Peng , Wenwen Ding , Zhiyun Zhang , Yadan Zheng , Sikai Chen , Xueying Chen , Qianwei Qu , Yanyan Liu , Yanhua Li
{"title":"超声酶辅助海藻糖脂提取黄连生物碱的工艺优化及抗炎作用评价","authors":"Huiwen Wang , Haixin Peng , Wenwen Ding , Zhiyun Zhang , Yadan Zheng , Sikai Chen , Xueying Chen , Qianwei Qu , Yanyan Liu , Yanhua Li","doi":"10.1016/j.ultsonch.2025.107396","DOIUrl":null,"url":null,"abstract":"<div><div>Coptidis Rhizoma (CR), a traditional Chinese medicine, has extensive pharmacological activity because it is rich in isoquinoline alkaloids. Nonetheless, the limited solubility of these alkaloids presents a significant challenge, hindering the full realization of CR’s therapeutic potential through conventional extraction methods. To address this issue and enhance the solubility of the target compounds while optimizing extraction efficiency, this study employed an environmentally sustainable extraction technique, Ultrasound-Enzyme-Trehalose Lipid (UET), to synergistically extract five key alkaloids from CR. Based on the results of single-factor experiments, Box-Behnken design (BBD) was employed to optimize the selected model variables. The optimal extraction conditions were determined: extraction pH of 4.3, extraction temperature of 40 ℃, solid–liquid ratio of 1:27 g/mL, and ultrasonication time of 48 min. UET extracts were compared with other extracts, and it was proved that UET extracts had higher alkaloid extraction rate, comprehensive evaluation value (CEV) and lower energy consumption and CO<sub>2</sub> emission. Then scanning electron microscopy (SEM), dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the extraction mechanism of UET extraction. In addition, UET extraction has more excellent anti-inflammatory activity. The establishment of UET method of CR provides a method reference for green and efficient extraction of alkaloid components from natural drugs.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"119 ","pages":"Article 107396"},"PeriodicalIF":8.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of ultrasound enzyme-assisted trehalose lipid extraction of Coptis alkaloids and evaluation of its anti-inflammatory effects\",\"authors\":\"Huiwen Wang , Haixin Peng , Wenwen Ding , Zhiyun Zhang , Yadan Zheng , Sikai Chen , Xueying Chen , Qianwei Qu , Yanyan Liu , Yanhua Li\",\"doi\":\"10.1016/j.ultsonch.2025.107396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coptidis Rhizoma (CR), a traditional Chinese medicine, has extensive pharmacological activity because it is rich in isoquinoline alkaloids. Nonetheless, the limited solubility of these alkaloids presents a significant challenge, hindering the full realization of CR’s therapeutic potential through conventional extraction methods. To address this issue and enhance the solubility of the target compounds while optimizing extraction efficiency, this study employed an environmentally sustainable extraction technique, Ultrasound-Enzyme-Trehalose Lipid (UET), to synergistically extract five key alkaloids from CR. Based on the results of single-factor experiments, Box-Behnken design (BBD) was employed to optimize the selected model variables. The optimal extraction conditions were determined: extraction pH of 4.3, extraction temperature of 40 ℃, solid–liquid ratio of 1:27 g/mL, and ultrasonication time of 48 min. UET extracts were compared with other extracts, and it was proved that UET extracts had higher alkaloid extraction rate, comprehensive evaluation value (CEV) and lower energy consumption and CO<sub>2</sub> emission. Then scanning electron microscopy (SEM), dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the extraction mechanism of UET extraction. In addition, UET extraction has more excellent anti-inflammatory activity. The establishment of UET method of CR provides a method reference for green and efficient extraction of alkaloid components from natural drugs.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"119 \",\"pages\":\"Article 107396\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725001750\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001750","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Optimization of ultrasound enzyme-assisted trehalose lipid extraction of Coptis alkaloids and evaluation of its anti-inflammatory effects
Coptidis Rhizoma (CR), a traditional Chinese medicine, has extensive pharmacological activity because it is rich in isoquinoline alkaloids. Nonetheless, the limited solubility of these alkaloids presents a significant challenge, hindering the full realization of CR’s therapeutic potential through conventional extraction methods. To address this issue and enhance the solubility of the target compounds while optimizing extraction efficiency, this study employed an environmentally sustainable extraction technique, Ultrasound-Enzyme-Trehalose Lipid (UET), to synergistically extract five key alkaloids from CR. Based on the results of single-factor experiments, Box-Behnken design (BBD) was employed to optimize the selected model variables. The optimal extraction conditions were determined: extraction pH of 4.3, extraction temperature of 40 ℃, solid–liquid ratio of 1:27 g/mL, and ultrasonication time of 48 min. UET extracts were compared with other extracts, and it was proved that UET extracts had higher alkaloid extraction rate, comprehensive evaluation value (CEV) and lower energy consumption and CO2 emission. Then scanning electron microscopy (SEM), dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the extraction mechanism of UET extraction. In addition, UET extraction has more excellent anti-inflammatory activity. The establishment of UET method of CR provides a method reference for green and efficient extraction of alkaloid components from natural drugs.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.