里帕系统的能量稳定和平衡方案

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
K.R. Arun , R. Ghorai
{"title":"里帕系统的能量稳定和平衡方案","authors":"K.R. Arun ,&nbsp;R. Ghorai","doi":"10.1016/j.apnum.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>We design and analyse an energy-stable, structure-preserving, and well-balanced scheme for the Ripa system of shallow water equations. The energy stability of the numerical solutions is achieved by introducing appropriate stabilisation terms in the discretisation of the convective fluxes of mass and momentum, the pressure gradient, and the topography source term. The careful selection of the interface values for the water height and temperature ensures the scheme's well-balancing property for three physically relevant hydrostatic steady states. The scheme, which is explicit in time and finite volume in space, preserves the positivity of both the water height and the temperature, and it is weakly consistent with the continuous model equations in the sense of Lax-Wendroff. Additionally, a suitable modification of the source term discretisation and timestep criterion allows the scheme to handle wet/dry fronts in equilibrium. The results of extensive numerical case studies on benchmark test problems confirm the theoretical findings.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"216 ","pages":"Pages 187-209"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An energy stable and well-balanced scheme for the Ripa system\",\"authors\":\"K.R. Arun ,&nbsp;R. Ghorai\",\"doi\":\"10.1016/j.apnum.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We design and analyse an energy-stable, structure-preserving, and well-balanced scheme for the Ripa system of shallow water equations. The energy stability of the numerical solutions is achieved by introducing appropriate stabilisation terms in the discretisation of the convective fluxes of mass and momentum, the pressure gradient, and the topography source term. The careful selection of the interface values for the water height and temperature ensures the scheme's well-balancing property for three physically relevant hydrostatic steady states. The scheme, which is explicit in time and finite volume in space, preserves the positivity of both the water height and the temperature, and it is weakly consistent with the continuous model equations in the sense of Lax-Wendroff. Additionally, a suitable modification of the source term discretisation and timestep criterion allows the scheme to handle wet/dry fronts in equilibrium. The results of extensive numerical case studies on benchmark test problems confirm the theoretical findings.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"216 \",\"pages\":\"Pages 187-209\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016892742500114X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742500114X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们设计并分析了一种能量稳定、结构保持和良好平衡的Ripa系统浅水方程方案。数值解的能量稳定性是通过在质量和动量对流通量、压力梯度和地形源项的离散化中引入适当的稳定项来实现的。水高和温度界面值的精心选择确保了该方案在三个物理相关的流体静力稳定状态下具有良好的平衡特性。该方案在时间上是显式的,在空间上是有限体积的,保留了水高和温度的正性,并且与Lax-Wendroff意义上的连续模型方程弱一致。此外,源项离散化和时间步长准则的适当修改允许该方案在平衡状态下处理干/湿锋面。对基准测试问题的大量数值案例研究结果证实了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy stable and well-balanced scheme for the Ripa system
We design and analyse an energy-stable, structure-preserving, and well-balanced scheme for the Ripa system of shallow water equations. The energy stability of the numerical solutions is achieved by introducing appropriate stabilisation terms in the discretisation of the convective fluxes of mass and momentum, the pressure gradient, and the topography source term. The careful selection of the interface values for the water height and temperature ensures the scheme's well-balancing property for three physically relevant hydrostatic steady states. The scheme, which is explicit in time and finite volume in space, preserves the positivity of both the water height and the temperature, and it is weakly consistent with the continuous model equations in the sense of Lax-Wendroff. Additionally, a suitable modification of the source term discretisation and timestep criterion allows the scheme to handle wet/dry fronts in equilibrium. The results of extensive numerical case studies on benchmark test problems confirm the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信