Xin Liu, Jie yu Gao, Yaoyu Zhou, Sha Bin Liu, Hong Qi Yang, Yuan Yang, Jian Yang
{"title":"纳米羟基磷灰石包覆的铜基纳米农药具有良好的应用前景:提高施用效率和植物元素的动态平衡","authors":"Xin Liu, Jie yu Gao, Yaoyu Zhou, Sha Bin Liu, Hong Qi Yang, Yuan Yang, Jian Yang","doi":"10.1039/d4en01118j","DOIUrl":null,"url":null,"abstract":"Cu-based pesticides are popular globally due to their low toxicity, high efficiency, broad applicability, and cost-effectiveness. However, their application often leads to waste and environmental issues. Here, we developed nanoscale hydroxyapatite(HAP) as the Cu-based pesticide carrier and coated with chitosan to realize the function of Cu/P slow release. The HAP carrier with three sizes (20 nm, 60 nm, and 80 µm) and three types of Cu-based pesticides (OrganCu, InorganCu, and NanoCu) were prepared and compared. The obtained nanopesticides with 60nm HAP carrier and NanoCu commercial pesticide (K60) exhibited application potential on long-term application performance, which demonstrated a particle size of less than 200 nm. At low concentrations (10 mg/kg), NanoCu pesticides significantly affected the soil microorganism diversity. The K60 could decrease the influence on microorganism diversity compared with the original commercial pesticides, which was accounted for the alpha diversity and microbial species composition variation. Besides, the K60 enhanced the phosphorus deficiency resistance of lettuces through adjustment of microelements homeostasis. This phenomenon was accounted for by the in 5 μM K60 increasing the Cu and P uptake (77.81% and 76.12%, respectively), and increasing the Mg and K uptake in root (44.95% and 39.74%, respectively). The nanopesticides dosage contributed more influence than nanocarrier size in lettuce roots ionome variation. Our research findings emphasize sustainable strategies to enhance the utilization efficiency of commercial pesticides while mitigating ecological risks. These insights contribute valuable ideas and references for the subsequent market introduction of nanopesticides. Keywords: Cu-based nanopesticides, slow-release, hydroxyapatite, plant elements homeostasis, soil microorganism","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"56 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale hydroxyapatite coated Cu-based nanopesticides exhibited promising benefits: Enhanced application efficiency and plants elements homeostasis\",\"authors\":\"Xin Liu, Jie yu Gao, Yaoyu Zhou, Sha Bin Liu, Hong Qi Yang, Yuan Yang, Jian Yang\",\"doi\":\"10.1039/d4en01118j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu-based pesticides are popular globally due to their low toxicity, high efficiency, broad applicability, and cost-effectiveness. However, their application often leads to waste and environmental issues. Here, we developed nanoscale hydroxyapatite(HAP) as the Cu-based pesticide carrier and coated with chitosan to realize the function of Cu/P slow release. The HAP carrier with three sizes (20 nm, 60 nm, and 80 µm) and three types of Cu-based pesticides (OrganCu, InorganCu, and NanoCu) were prepared and compared. The obtained nanopesticides with 60nm HAP carrier and NanoCu commercial pesticide (K60) exhibited application potential on long-term application performance, which demonstrated a particle size of less than 200 nm. At low concentrations (10 mg/kg), NanoCu pesticides significantly affected the soil microorganism diversity. The K60 could decrease the influence on microorganism diversity compared with the original commercial pesticides, which was accounted for the alpha diversity and microbial species composition variation. Besides, the K60 enhanced the phosphorus deficiency resistance of lettuces through adjustment of microelements homeostasis. This phenomenon was accounted for by the in 5 μM K60 increasing the Cu and P uptake (77.81% and 76.12%, respectively), and increasing the Mg and K uptake in root (44.95% and 39.74%, respectively). The nanopesticides dosage contributed more influence than nanocarrier size in lettuce roots ionome variation. Our research findings emphasize sustainable strategies to enhance the utilization efficiency of commercial pesticides while mitigating ecological risks. These insights contribute valuable ideas and references for the subsequent market introduction of nanopesticides. Keywords: Cu-based nanopesticides, slow-release, hydroxyapatite, plant elements homeostasis, soil microorganism\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en01118j\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01118j","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanoscale hydroxyapatite coated Cu-based nanopesticides exhibited promising benefits: Enhanced application efficiency and plants elements homeostasis
Cu-based pesticides are popular globally due to their low toxicity, high efficiency, broad applicability, and cost-effectiveness. However, their application often leads to waste and environmental issues. Here, we developed nanoscale hydroxyapatite(HAP) as the Cu-based pesticide carrier and coated with chitosan to realize the function of Cu/P slow release. The HAP carrier with three sizes (20 nm, 60 nm, and 80 µm) and three types of Cu-based pesticides (OrganCu, InorganCu, and NanoCu) were prepared and compared. The obtained nanopesticides with 60nm HAP carrier and NanoCu commercial pesticide (K60) exhibited application potential on long-term application performance, which demonstrated a particle size of less than 200 nm. At low concentrations (10 mg/kg), NanoCu pesticides significantly affected the soil microorganism diversity. The K60 could decrease the influence on microorganism diversity compared with the original commercial pesticides, which was accounted for the alpha diversity and microbial species composition variation. Besides, the K60 enhanced the phosphorus deficiency resistance of lettuces through adjustment of microelements homeostasis. This phenomenon was accounted for by the in 5 μM K60 increasing the Cu and P uptake (77.81% and 76.12%, respectively), and increasing the Mg and K uptake in root (44.95% and 39.74%, respectively). The nanopesticides dosage contributed more influence than nanocarrier size in lettuce roots ionome variation. Our research findings emphasize sustainable strategies to enhance the utilization efficiency of commercial pesticides while mitigating ecological risks. These insights contribute valuable ideas and references for the subsequent market introduction of nanopesticides. Keywords: Cu-based nanopesticides, slow-release, hydroxyapatite, plant elements homeostasis, soil microorganism
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis