{"title":"高面积容量锰基二磷酸钠改性电解液氧化还原液流电池","authors":"Xin Liu, Zhang Chen, Chengyu Zhang, Changsheng Ding, Haitao Feng, Yuanyuan Cui, Yanfeng Gao","doi":"10.1002/adfm.202509495","DOIUrl":null,"url":null,"abstract":"Manganese (Mn)‐based redox flow batteries (RFBs) have emerged as promising candidates for large‐scale energy storage owing to their high redox potential (Mn<jats:sup>2+</jats:sup>/Mn<jats:sup>3+</jats:sup>: 1.58 V vs SHE), cost‐effectiveness, and sustainability. Nevertheless, Mn‐based RFBs face a critical challenge: the undesired formation of crystalline MnO<jats:sub>2</jats:sub> through Mn<jats:sup>3+</jats:sup> disproportionation and irreversibility of MnO<jats:sub>2</jats:sub> deposits on electrode surfaces severely diminish accessible reaction sites and restrict achievable areal capacity. Herein, it is demonstrated that ligand chelation‐mediated structural transformation of MnO<jats:sub>2</jats:sub> by sodium diphosphate (Na<jats:sub>4</jats:sub>P<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub>, PPi) modulates MnO<jats:sub>2</jats:sub> deposition behavior. The PPi coordinate with Mn<jats:sup>2+</jats:sup> to form a stable [Mn(HPO<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>(H<jats:sub>2</jats:sub>O)<jats:sub>2</jats:sub>]<jats:sup>2−</jats:sup> chelate, which facilitates the incorporation of defective O and P into the evolving MnO<jats:sub>2</jats:sub> structure, effectively disrupting its crystallographic ordering and converting MnO<jats:sub>2</jats:sub> from crystalline to amorphous configuration. The amorphous MnO<jats:sub>2</jats:sub> tends to flow into the electrolyte instead of depositing on the electrode due to the electrostatic interplay, thereby resulting in a breakthrough areal capacity of 91.5 mAh cm<jats:sup>−2</jats:sup> (300 cycles @ 99.7% CE) and 141.8 mAh cm<jats:sup>−2</jats:sup> (150 cycles @ 98.2% CE, the highest reported values), representing a 10‐fold enhancement compared to additive‐free counterparts. The ligand chelation modification of MnO<jats:sub>2</jats:sub> provides a new pathway for developing high‐areal‐capacity Mn‐based RFBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐Areal‐Capacity Manganese‐Based Redox Flow Batteries via Sodium Diphosphate‐Modified Electrolyte\",\"authors\":\"Xin Liu, Zhang Chen, Chengyu Zhang, Changsheng Ding, Haitao Feng, Yuanyuan Cui, Yanfeng Gao\",\"doi\":\"10.1002/adfm.202509495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manganese (Mn)‐based redox flow batteries (RFBs) have emerged as promising candidates for large‐scale energy storage owing to their high redox potential (Mn<jats:sup>2+</jats:sup>/Mn<jats:sup>3+</jats:sup>: 1.58 V vs SHE), cost‐effectiveness, and sustainability. Nevertheless, Mn‐based RFBs face a critical challenge: the undesired formation of crystalline MnO<jats:sub>2</jats:sub> through Mn<jats:sup>3+</jats:sup> disproportionation and irreversibility of MnO<jats:sub>2</jats:sub> deposits on electrode surfaces severely diminish accessible reaction sites and restrict achievable areal capacity. Herein, it is demonstrated that ligand chelation‐mediated structural transformation of MnO<jats:sub>2</jats:sub> by sodium diphosphate (Na<jats:sub>4</jats:sub>P<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub>, PPi) modulates MnO<jats:sub>2</jats:sub> deposition behavior. The PPi coordinate with Mn<jats:sup>2+</jats:sup> to form a stable [Mn(HPO<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>(H<jats:sub>2</jats:sub>O)<jats:sub>2</jats:sub>]<jats:sup>2−</jats:sup> chelate, which facilitates the incorporation of defective O and P into the evolving MnO<jats:sub>2</jats:sub> structure, effectively disrupting its crystallographic ordering and converting MnO<jats:sub>2</jats:sub> from crystalline to amorphous configuration. The amorphous MnO<jats:sub>2</jats:sub> tends to flow into the electrolyte instead of depositing on the electrode due to the electrostatic interplay, thereby resulting in a breakthrough areal capacity of 91.5 mAh cm<jats:sup>−2</jats:sup> (300 cycles @ 99.7% CE) and 141.8 mAh cm<jats:sup>−2</jats:sup> (150 cycles @ 98.2% CE, the highest reported values), representing a 10‐fold enhancement compared to additive‐free counterparts. The ligand chelation modification of MnO<jats:sub>2</jats:sub> provides a new pathway for developing high‐areal‐capacity Mn‐based RFBs.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509495\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509495","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
锰(Mn)基氧化还原液流电池(rfb)因其高氧化还原潜力(Mn2+/Mn3+: 1.58 V vs SHE)、成本效益和可持续性而成为大规模储能的有希望的候选材料。然而,锰基RFBs面临着一个关键的挑战:通过Mn3+歧化和电极表面MnO2沉积的不可逆性,晶体MnO2的形成严重减少了可达的反应位点,并限制了可实现的面积容量。本文证明了配体螯合介导的二磷酸钠(Na4P2O7, PPi)对MnO2的结构转化调节了MnO2的沉积行为。PPi与Mn2+配位形成稳定的[Mn(HPO4)2(H2O)2]2−螯合物,有利于将有缺陷的O和P掺入不断发展的MnO2结构中,有效地破坏了其晶体结构,使MnO2从晶体结构转变为非晶态结构。由于静电相互作用,无定形MnO2倾向于流入电解质而不是沉积在电极上,从而导致突破面积容量为91.5 mAh cm - 2(300次循环@ 99.7% CE)和141.8 mAh cm - 2(150次循环@ 98.2% CE,报道的最高值),与无添加剂的同类产品相比,提高了10倍。MnO2的配体螯合修饰为开发高面积容量Mn基rfb提供了一条新的途径。
High‐Areal‐Capacity Manganese‐Based Redox Flow Batteries via Sodium Diphosphate‐Modified Electrolyte
Manganese (Mn)‐based redox flow batteries (RFBs) have emerged as promising candidates for large‐scale energy storage owing to their high redox potential (Mn2+/Mn3+: 1.58 V vs SHE), cost‐effectiveness, and sustainability. Nevertheless, Mn‐based RFBs face a critical challenge: the undesired formation of crystalline MnO2 through Mn3+ disproportionation and irreversibility of MnO2 deposits on electrode surfaces severely diminish accessible reaction sites and restrict achievable areal capacity. Herein, it is demonstrated that ligand chelation‐mediated structural transformation of MnO2 by sodium diphosphate (Na4P2O7, PPi) modulates MnO2 deposition behavior. The PPi coordinate with Mn2+ to form a stable [Mn(HPO4)2(H2O)2]2− chelate, which facilitates the incorporation of defective O and P into the evolving MnO2 structure, effectively disrupting its crystallographic ordering and converting MnO2 from crystalline to amorphous configuration. The amorphous MnO2 tends to flow into the electrolyte instead of depositing on the electrode due to the electrostatic interplay, thereby resulting in a breakthrough areal capacity of 91.5 mAh cm−2 (300 cycles @ 99.7% CE) and 141.8 mAh cm−2 (150 cycles @ 98.2% CE, the highest reported values), representing a 10‐fold enhancement compared to additive‐free counterparts. The ligand chelation modification of MnO2 provides a new pathway for developing high‐areal‐capacity Mn‐based RFBs.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.