利用相变工程对二硫化钼纳米片进行原子极化调节,实现优异的电磁波耗散

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Wang, Mengqiu Huang, Longjun Rao, Yuetong Qian, Zhikai Yan, Xue He, Wenbin You, Renchao Che
{"title":"利用相变工程对二硫化钼纳米片进行原子极化调节,实现优异的电磁波耗散","authors":"Lei Wang, Mengqiu Huang, Longjun Rao, Yuetong Qian, Zhikai Yan, Xue He, Wenbin You, Renchao Che","doi":"10.1002/adfm.202507569","DOIUrl":null,"url":null,"abstract":"Disentangling the limitations of dipole activity at the atomic scale in the dielectric materials is key to boosting the intrinsic polarization ability and electromagnetic (EM) energy dissipation. Herein, an atomic structure regulation in molybdenum disulfide (MoS<jats:sub>2</jats:sub>) nanosheets (NSs) connected by multi‐wall carbon nanotubes (MoS<jats:sub>2</jats:sub>‐MWCNTs) is studied to explore the correlation between the local atomic structure and polarization properties at the atomic scale. Induced by the phase transition engineering, 1T‐phase dominated MoS<jats:sub>2</jats:sub> NSs with centrosymmetric D3d point groups are evolved from the 2H‐phase structure. Atomic‐scale and visualized electric field distribution in the MoS<jats:sub>2</jats:sub> NSs are verified by the advanced integrated differential phase contrast technology and related scanning transmission electron microscopy (iDPC‐STEM) imaging. Periodic atomic structure in the 1T‐phase MoS<jats:sub>2</jats:sub> is constructed to enhance symmetrical electric field distribution and those phase interlaced regions promoted a significant increase in dielectric relaxation. Benefiting the boosted dielectric ability and polarization behaviors, 1T‐phase dominated MoS<jats:sub>2</jats:sub>@MWCNTs (TMC) exhibit superior EM wave energy dissipation with the minimum reflection loss (RL<jats:sub>min</jats:sub>) value of −74.3 dB at only 1.7 mm thickness. Changes in atomic structure and electric field study in the MoS<jats:sub>2</jats:sub> NSs help to further elucidate their polarization mechanism and to explore the for studying the mixed‐phase 2D functional nanosheets.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"135 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomically Polarization Regulation in Molybdenum Disulfide Nanosheets via Phase Transition Engineering for Superior Electromagnetic Wave Dissipation\",\"authors\":\"Lei Wang, Mengqiu Huang, Longjun Rao, Yuetong Qian, Zhikai Yan, Xue He, Wenbin You, Renchao Che\",\"doi\":\"10.1002/adfm.202507569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disentangling the limitations of dipole activity at the atomic scale in the dielectric materials is key to boosting the intrinsic polarization ability and electromagnetic (EM) energy dissipation. Herein, an atomic structure regulation in molybdenum disulfide (MoS<jats:sub>2</jats:sub>) nanosheets (NSs) connected by multi‐wall carbon nanotubes (MoS<jats:sub>2</jats:sub>‐MWCNTs) is studied to explore the correlation between the local atomic structure and polarization properties at the atomic scale. Induced by the phase transition engineering, 1T‐phase dominated MoS<jats:sub>2</jats:sub> NSs with centrosymmetric D3d point groups are evolved from the 2H‐phase structure. Atomic‐scale and visualized electric field distribution in the MoS<jats:sub>2</jats:sub> NSs are verified by the advanced integrated differential phase contrast technology and related scanning transmission electron microscopy (iDPC‐STEM) imaging. Periodic atomic structure in the 1T‐phase MoS<jats:sub>2</jats:sub> is constructed to enhance symmetrical electric field distribution and those phase interlaced regions promoted a significant increase in dielectric relaxation. Benefiting the boosted dielectric ability and polarization behaviors, 1T‐phase dominated MoS<jats:sub>2</jats:sub>@MWCNTs (TMC) exhibit superior EM wave energy dissipation with the minimum reflection loss (RL<jats:sub>min</jats:sub>) value of −74.3 dB at only 1.7 mm thickness. Changes in atomic structure and electric field study in the MoS<jats:sub>2</jats:sub> NSs help to further elucidate their polarization mechanism and to explore the for studying the mixed‐phase 2D functional nanosheets.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202507569\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507569","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

突破介电材料中偶极子活动在原子尺度上的限制是提高材料本征极化能力和电磁能量耗散的关键。本文研究了由多壁碳纳米管(MoS2 - MWCNTs)连接的二硫化钼(MoS2)纳米片(NSs)的原子结构调控,以探索原子尺度上局部原子结构与极化特性之间的关系。在相变工程的诱导下,具有中心对称D3d点群的以1T相为主的MoS2 NSs由2H相结构演化而来。通过先进的集成差相对比技术和相关的扫描透射电子显微镜(iDPC‐STEM)成像,验证了MoS2 NSs中的原子尺度和可视化电场分布。1T相MoS2的周期性原子结构增强了电场分布的对称性,这些相交错区域促进了介电弛豫的显著增加。受益于增强的介电能力和极化行为,1T相主导MoS2@MWCNTs (TMC)表现出优越的电磁波能量耗散,最小反射损耗(RLmin)值为- 74.3 dB,厚度仅为1.7 mm。二硫化钼纳米片原子结构的变化和电场的研究有助于进一步阐明其极化机理,并为研究混合相二维功能纳米片开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomically Polarization Regulation in Molybdenum Disulfide Nanosheets via Phase Transition Engineering for Superior Electromagnetic Wave Dissipation
Disentangling the limitations of dipole activity at the atomic scale in the dielectric materials is key to boosting the intrinsic polarization ability and electromagnetic (EM) energy dissipation. Herein, an atomic structure regulation in molybdenum disulfide (MoS2) nanosheets (NSs) connected by multi‐wall carbon nanotubes (MoS2‐MWCNTs) is studied to explore the correlation between the local atomic structure and polarization properties at the atomic scale. Induced by the phase transition engineering, 1T‐phase dominated MoS2 NSs with centrosymmetric D3d point groups are evolved from the 2H‐phase structure. Atomic‐scale and visualized electric field distribution in the MoS2 NSs are verified by the advanced integrated differential phase contrast technology and related scanning transmission electron microscopy (iDPC‐STEM) imaging. Periodic atomic structure in the 1T‐phase MoS2 is constructed to enhance symmetrical electric field distribution and those phase interlaced regions promoted a significant increase in dielectric relaxation. Benefiting the boosted dielectric ability and polarization behaviors, 1T‐phase dominated MoS2@MWCNTs (TMC) exhibit superior EM wave energy dissipation with the minimum reflection loss (RLmin) value of −74.3 dB at only 1.7 mm thickness. Changes in atomic structure and electric field study in the MoS2 NSs help to further elucidate their polarization mechanism and to explore the for studying the mixed‐phase 2D functional nanosheets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信