血管生成素- tie2前馈电路促进pik3ca驱动的静脉畸形。

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Marle Kraft, Hans Schoofs, Milena Petkova, Jorge Andrade, Ana Rita Grosso, Rui Benedito, An-Katrien De Roo, Laurence M Boon, Miikka Vikkula, Friedrich G Kapp, René Hägerling, Michael Potente, Taija Mäkinen
{"title":"血管生成素- tie2前馈电路促进pik3ca驱动的静脉畸形。","authors":"Marle Kraft, Hans Schoofs, Milena Petkova, Jorge Andrade, Ana Rita Grosso, Rui Benedito, An-Katrien De Roo, Laurence M Boon, Miikka Vikkula, Friedrich G Kapp, René Hägerling, Michael Potente, Taija Mäkinen","doi":"10.1038/s44161-025-00655-9","DOIUrl":null,"url":null,"abstract":"<p><p>Venous malformations (VMs) are vascular anomalies lacking curative treatments, often caused by somatic PIK3CA mutations that hyperactivate the PI3Kα-AKT-mTOR signaling pathway. Here, we identify a venous-specific signaling circuit driving disease progression, where excessive PI3Kα activity amplifies upstream TIE2 receptor signaling through autocrine and paracrine mechanisms. In Pik3ca<sup>H1047R</sup>-driven VM mouse models, single-cell transcriptomics and lineage tracking revealed clonal expansion of mutant endothelial cells with a post-capillary venous phenotype, characterized by suppression of the AKT-inhibited FOXO1 and its target genes, including the TIE2 antagonist ANGPT2. An imbalance in TIE2 ligands, likely exacerbated by aberrant recruitment of smooth muscle cells producing the agonist ANGPT1, increased TIE2 activity in both mouse and human VMs. While mTOR blockade had limited effects on advanced VMs in mice, inhibiting TIE2 or ANGPT effectively suppressed their growth. These findings uncover a PI3K-FOXO1-ANGPT-TIE2 circuit as a core driver of PIK3CA-related VMs and highlight TIE2 as a promising therapeutic target.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angiopoietin-TIE2 feedforward circuit promotes PIK3CA-driven venous malformations.\",\"authors\":\"Marle Kraft, Hans Schoofs, Milena Petkova, Jorge Andrade, Ana Rita Grosso, Rui Benedito, An-Katrien De Roo, Laurence M Boon, Miikka Vikkula, Friedrich G Kapp, René Hägerling, Michael Potente, Taija Mäkinen\",\"doi\":\"10.1038/s44161-025-00655-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Venous malformations (VMs) are vascular anomalies lacking curative treatments, often caused by somatic PIK3CA mutations that hyperactivate the PI3Kα-AKT-mTOR signaling pathway. Here, we identify a venous-specific signaling circuit driving disease progression, where excessive PI3Kα activity amplifies upstream TIE2 receptor signaling through autocrine and paracrine mechanisms. In Pik3ca<sup>H1047R</sup>-driven VM mouse models, single-cell transcriptomics and lineage tracking revealed clonal expansion of mutant endothelial cells with a post-capillary venous phenotype, characterized by suppression of the AKT-inhibited FOXO1 and its target genes, including the TIE2 antagonist ANGPT2. An imbalance in TIE2 ligands, likely exacerbated by aberrant recruitment of smooth muscle cells producing the agonist ANGPT1, increased TIE2 activity in both mouse and human VMs. While mTOR blockade had limited effects on advanced VMs in mice, inhibiting TIE2 or ANGPT effectively suppressed their growth. These findings uncover a PI3K-FOXO1-ANGPT-TIE2 circuit as a core driver of PIK3CA-related VMs and highlight TIE2 as a promising therapeutic target.</p>\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44161-025-00655-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00655-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

静脉畸形(VMs)是缺乏根治性治疗的血管异常,通常由体细胞PIK3CA突变过度激活PI3Kα-AKT-mTOR信号通路引起。在这里,我们确定了驱动疾病进展的静脉特异性信号通路,其中过度的PI3Kα活性通过自分泌和旁分泌机制放大上游TIE2受体信号。在pik3cah1047r驱动的VM小鼠模型中,单细胞转录组学和谱系追踪显示突变内皮细胞克隆扩增具有毛细血管后静脉表型,其特征是抑制akt抑制的FOXO1及其靶基因,包括TIE2拮抗剂ANGPT2。在小鼠和人类vm中,由于产生激动剂ANGPT1的平滑肌细胞的异常募集,可能加剧了TIE2配体的失衡,从而增加了TIE2活性。虽然mTOR阻断对小鼠晚期vm的影响有限,但抑制TIE2或ANGPT可有效抑制其生长。这些发现揭示了pi3k - fox01 - angpt -TIE2回路是pik3ca相关vm的核心驱动因素,并强调了TIE2是一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angiopoietin-TIE2 feedforward circuit promotes PIK3CA-driven venous malformations.

Venous malformations (VMs) are vascular anomalies lacking curative treatments, often caused by somatic PIK3CA mutations that hyperactivate the PI3Kα-AKT-mTOR signaling pathway. Here, we identify a venous-specific signaling circuit driving disease progression, where excessive PI3Kα activity amplifies upstream TIE2 receptor signaling through autocrine and paracrine mechanisms. In Pik3caH1047R-driven VM mouse models, single-cell transcriptomics and lineage tracking revealed clonal expansion of mutant endothelial cells with a post-capillary venous phenotype, characterized by suppression of the AKT-inhibited FOXO1 and its target genes, including the TIE2 antagonist ANGPT2. An imbalance in TIE2 ligands, likely exacerbated by aberrant recruitment of smooth muscle cells producing the agonist ANGPT1, increased TIE2 activity in both mouse and human VMs. While mTOR blockade had limited effects on advanced VMs in mice, inhibiting TIE2 or ANGPT effectively suppressed their growth. These findings uncover a PI3K-FOXO1-ANGPT-TIE2 circuit as a core driver of PIK3CA-related VMs and highlight TIE2 as a promising therapeutic target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信