FeCu双金属界面上的远程电子转移途径:桥接催化机制和可扩展的污染物降解应用。

Journal of hazardous materials Pub Date : 2025-08-15 Epub Date: 2025-05-22 DOI:10.1016/j.jhazmat.2025.138682
Xiaoyin You, Chaohai Wang, Chuqiao Wang, Xing Xu, Yuying Hu, Ning Li, Fengping Hu, Wen Liu, Xiaoming Peng
{"title":"FeCu双金属界面上的远程电子转移途径:桥接催化机制和可扩展的污染物降解应用。","authors":"Xiaoyin You, Chaohai Wang, Chuqiao Wang, Xing Xu, Yuying Hu, Ning Li, Fengping Hu, Wen Liu, Xiaoming Peng","doi":"10.1016/j.jhazmat.2025.138682","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and stable heterogeneous catalysts for peroxymonosulfate (PMS) activation are pivotal for advancing advanced oxidation processes in water treatment. However, the limited redox cycling capacity of single-metal sites often hinders their catalytic performance and durability. Here, dispersed Fe-Cu bimetallic clusters anchored on a nitrogen-sulfur codoped carbon matrix ((FeCu-SNC) were synthesized via a coordination-pyrolysis strategy. FeCu-SNC was engineered to activate peroxymonosulfate (PMS) for the degradation of bisphenol A (BPA) and structurally diverse pollutants. Combined experimental and density functional theory (DFT) analyses revealed that the Fe-Cu dual sites synergistically enhanced PMS adsorption and triggered a dominant electron transfer pathway (ETP), bypassing conventional radical-mediated mechanisms. The FeCu-SNC/PMS system achieved rapid BPA degradation (k<sub>obs</sub> > 0.38 min<sup>-1</sup>), with preferential oxidation of pollutants bearing electron-donating groups. A dynamic catalytic membrane system (DCMS) integrated with electrospinning technology enabled catalyst reuse, maintaining > 95 % BPA removal over 300 min of continuous operation. Furthermore, a scalable ETP device utilizing a salt bridge and ammeter effectively isolated sulfate ion leaching, attaining 96 % pollutant removal after 72 h while addressing secondary pollution. This work provides a dual strategy- catalyst design and process engineering-for sustainable water decontamination.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"494 ","pages":"138682"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-range electron transfer pathways at FeCu bimetallic interfaces: Bridging catalytic mechanisms and scalable applications for persistent pollutant degradation.\",\"authors\":\"Xiaoyin You, Chaohai Wang, Chuqiao Wang, Xing Xu, Yuying Hu, Ning Li, Fengping Hu, Wen Liu, Xiaoming Peng\",\"doi\":\"10.1016/j.jhazmat.2025.138682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient and stable heterogeneous catalysts for peroxymonosulfate (PMS) activation are pivotal for advancing advanced oxidation processes in water treatment. However, the limited redox cycling capacity of single-metal sites often hinders their catalytic performance and durability. Here, dispersed Fe-Cu bimetallic clusters anchored on a nitrogen-sulfur codoped carbon matrix ((FeCu-SNC) were synthesized via a coordination-pyrolysis strategy. FeCu-SNC was engineered to activate peroxymonosulfate (PMS) for the degradation of bisphenol A (BPA) and structurally diverse pollutants. Combined experimental and density functional theory (DFT) analyses revealed that the Fe-Cu dual sites synergistically enhanced PMS adsorption and triggered a dominant electron transfer pathway (ETP), bypassing conventional radical-mediated mechanisms. The FeCu-SNC/PMS system achieved rapid BPA degradation (k<sub>obs</sub> > 0.38 min<sup>-1</sup>), with preferential oxidation of pollutants bearing electron-donating groups. A dynamic catalytic membrane system (DCMS) integrated with electrospinning technology enabled catalyst reuse, maintaining > 95 % BPA removal over 300 min of continuous operation. Furthermore, a scalable ETP device utilizing a salt bridge and ammeter effectively isolated sulfate ion leaching, attaining 96 % pollutant removal after 72 h while addressing secondary pollution. This work provides a dual strategy- catalyst design and process engineering-for sustainable water decontamination.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"494 \",\"pages\":\"138682\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效、稳定的非均相催化剂催化过氧单硫酸盐(PMS)活化是推进水处理中高级氧化工艺的关键。然而,单金属位点有限的氧化还原循环能力往往阻碍了它们的催化性能和耐久性。本文通过配位热解策略合成了锚定在氮硫共掺杂碳基体(FeCu-SNC)上的分散Fe-Cu双金属团簇。FeCu-SNC被设计用于激活过氧单硫酸盐(PMS)降解双酚A (BPA)和结构多样的污染物。结合实验和密度泛函数理论(DFT)分析表明,Fe-Cu双位点协同增强了PMS的吸附,并触发了一个主要的电子转移途径(ETP),绕过了传统的自由基介导机制。FeCu-SNC/PMS系统实现了双酚a的快速降解(kobs > 0.38 min-1),优先氧化含有电子给体基团的污染物。与静电纺丝技术相结合的动态催化膜系统(DCMS)使催化剂能够重复使用,在300 分钟的连续运行中保持> 95 %的BPA去除率。此外,利用盐桥和电流表的可扩展ETP装置有效地隔离了硫酸盐离子浸出,在72 h后达到96% %的污染物去除,同时解决了二次污染。本研究为可持续水净化提供了催化剂设计和工艺工程的双重策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-range electron transfer pathways at FeCu bimetallic interfaces: Bridging catalytic mechanisms and scalable applications for persistent pollutant degradation.

Efficient and stable heterogeneous catalysts for peroxymonosulfate (PMS) activation are pivotal for advancing advanced oxidation processes in water treatment. However, the limited redox cycling capacity of single-metal sites often hinders their catalytic performance and durability. Here, dispersed Fe-Cu bimetallic clusters anchored on a nitrogen-sulfur codoped carbon matrix ((FeCu-SNC) were synthesized via a coordination-pyrolysis strategy. FeCu-SNC was engineered to activate peroxymonosulfate (PMS) for the degradation of bisphenol A (BPA) and structurally diverse pollutants. Combined experimental and density functional theory (DFT) analyses revealed that the Fe-Cu dual sites synergistically enhanced PMS adsorption and triggered a dominant electron transfer pathway (ETP), bypassing conventional radical-mediated mechanisms. The FeCu-SNC/PMS system achieved rapid BPA degradation (kobs > 0.38 min-1), with preferential oxidation of pollutants bearing electron-donating groups. A dynamic catalytic membrane system (DCMS) integrated with electrospinning technology enabled catalyst reuse, maintaining > 95 % BPA removal over 300 min of continuous operation. Furthermore, a scalable ETP device utilizing a salt bridge and ammeter effectively isolated sulfate ion leaching, attaining 96 % pollutant removal after 72 h while addressing secondary pollution. This work provides a dual strategy- catalyst design and process engineering-for sustainable water decontamination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信