{"title":"抗菌素外排和生物膜:导致紧急耐药性进化的相互作用。","authors":"Silvia Vareschi, Valerie Jaut, Srinivasan Vijay, Rosalind J Allen, Frank Schreiber","doi":"10.1016/j.tim.2025.04.012","DOIUrl":null,"url":null,"abstract":"<p><p>The biofilm mode of growth and drug efflux are both important factors that impede the treatment of bacterial infections with antimicrobials. Decades of work have uncovered the mechanisms involved in both efflux and biofilm-mediated antimicrobial tolerance, but links between these phenomena have only recently been discovered. Novel findings show how efflux impacts global cellular physiology and antibiotic tolerance, underpinned by phenotypic heterogeneity. In addition efflux can mediate cell-to-cell interactions, relevant in biofilms, via mechanisms including efflux of signaling molecules and metabolites, signaling using pump components and the establishment of local antibiotic gradients via pumping. These recent findings suggest that biofilm antibiotic tolerance and efflux are closely coupled, with synergistic effects leading to the evolution of antimicrobial resistance in the biofilm environment.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial efflux and biofilms: an interplay leading to emergent resistance evolution.\",\"authors\":\"Silvia Vareschi, Valerie Jaut, Srinivasan Vijay, Rosalind J Allen, Frank Schreiber\",\"doi\":\"10.1016/j.tim.2025.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biofilm mode of growth and drug efflux are both important factors that impede the treatment of bacterial infections with antimicrobials. Decades of work have uncovered the mechanisms involved in both efflux and biofilm-mediated antimicrobial tolerance, but links between these phenomena have only recently been discovered. Novel findings show how efflux impacts global cellular physiology and antibiotic tolerance, underpinned by phenotypic heterogeneity. In addition efflux can mediate cell-to-cell interactions, relevant in biofilms, via mechanisms including efflux of signaling molecules and metabolites, signaling using pump components and the establishment of local antibiotic gradients via pumping. These recent findings suggest that biofilm antibiotic tolerance and efflux are closely coupled, with synergistic effects leading to the evolution of antimicrobial resistance in the biofilm environment.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2025.04.012\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2025.04.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antimicrobial efflux and biofilms: an interplay leading to emergent resistance evolution.
The biofilm mode of growth and drug efflux are both important factors that impede the treatment of bacterial infections with antimicrobials. Decades of work have uncovered the mechanisms involved in both efflux and biofilm-mediated antimicrobial tolerance, but links between these phenomena have only recently been discovered. Novel findings show how efflux impacts global cellular physiology and antibiotic tolerance, underpinned by phenotypic heterogeneity. In addition efflux can mediate cell-to-cell interactions, relevant in biofilms, via mechanisms including efflux of signaling molecules and metabolites, signaling using pump components and the establishment of local antibiotic gradients via pumping. These recent findings suggest that biofilm antibiotic tolerance and efflux are closely coupled, with synergistic effects leading to the evolution of antimicrobial resistance in the biofilm environment.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.