CellWalker2:使用分层细胞类型关系的多组学发现。

IF 11.1 Q1 CELL BIOLOGY
Zhirui Hu, Pawel F Przytycki, Katherine S Pollard
{"title":"CellWalker2:使用分层细胞类型关系的多组学发现。","authors":"Zhirui Hu, Pawel F Przytycki, Katherine S Pollard","doi":"10.1016/j.xgen.2025.100886","DOIUrl":null,"url":null,"abstract":"<p><p>Tissues are composed of cells with a wide range of similarities to each other, yet existing methods for single-cell genomics treat cell types as discrete labels. To address this gap, we developed CellWalker2, a graph diffusion-based model for the annotation and mapping of multi-modal data. With our open-source software package, hierarchically related cell types can be probabilistically matched across contexts and used to annotate cells, genomic regions, or gene sets. Additional features include estimating statistical significance and enabling gene expression and chromatin accessibility to be jointly modeled. Through simulation studies, we show that CellWalker2 performs better than existing methods in cell-type annotation and mapping. We then use multi-omics data from the brain and immune system to demonstrate CellWalker2's ability to assign high-resolution cell-type labels to regulatory elements and TFs and to quantify both conserved and divergent cell-type relationships between species.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100886"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CellWalker2: Multi-omic discovery using hierarchical cell type relationships.\",\"authors\":\"Zhirui Hu, Pawel F Przytycki, Katherine S Pollard\",\"doi\":\"10.1016/j.xgen.2025.100886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissues are composed of cells with a wide range of similarities to each other, yet existing methods for single-cell genomics treat cell types as discrete labels. To address this gap, we developed CellWalker2, a graph diffusion-based model for the annotation and mapping of multi-modal data. With our open-source software package, hierarchically related cell types can be probabilistically matched across contexts and used to annotate cells, genomic regions, or gene sets. Additional features include estimating statistical significance and enabling gene expression and chromatin accessibility to be jointly modeled. Through simulation studies, we show that CellWalker2 performs better than existing methods in cell-type annotation and mapping. We then use multi-omics data from the brain and immune system to demonstrate CellWalker2's ability to assign high-resolution cell-type labels to regulatory elements and TFs and to quantify both conserved and divergent cell-type relationships between species.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100886\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组织是由彼此具有广泛相似性的细胞组成的,然而现有的单细胞基因组学方法将细胞类型视为离散标签。为了解决这个问题,我们开发了CellWalker2,这是一个基于图扩散的模型,用于多模态数据的注释和映射。有了我们的开源软件包,层次相关的细胞类型可以跨上下文概率匹配,并用于注释细胞、基因组区域或基因集。其他功能包括估计统计显著性和使基因表达和染色质可及性联合建模。通过仿真研究,我们发现CellWalker2在细胞类型标注和映射方面优于现有方法。然后,我们使用来自大脑和免疫系统的多组学数据来证明CellWalker2能够为调节元件和tf分配高分辨率细胞类型标签,并量化物种之间的保守和分化细胞类型关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CellWalker2: Multi-omic discovery using hierarchical cell type relationships.

Tissues are composed of cells with a wide range of similarities to each other, yet existing methods for single-cell genomics treat cell types as discrete labels. To address this gap, we developed CellWalker2, a graph diffusion-based model for the annotation and mapping of multi-modal data. With our open-source software package, hierarchically related cell types can be probabilistically matched across contexts and used to annotate cells, genomic regions, or gene sets. Additional features include estimating statistical significance and enabling gene expression and chromatin accessibility to be jointly modeled. Through simulation studies, we show that CellWalker2 performs better than existing methods in cell-type annotation and mapping. We then use multi-omics data from the brain and immune system to demonstrate CellWalker2's ability to assign high-resolution cell-type labels to regulatory elements and TFs and to quantify both conserved and divergent cell-type relationships between species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信