{"title":"嗜muciniphila通过调节ppar α依赖的线粒体生物发生改善阿霉素诱导的心脏毒性。","authors":"Hui Lin, Xian Shao, Haodi Gu, Xinrou Yu, Lingyan He, Jiedong Zhou, Zuoquan Zhong, Shitian Guo, Dan Li, Fei Chen, Yongfei Song, Lili Xu, Ping Wang, Liping Meng, Jufang Chi, Jiangfang Lian","doi":"10.1038/s41522-025-00712-y","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is a key chemotherapeutic agent but is also a leading cause of DOX-induced cardiotoxicity (DIC), limiting its clinical use. Akkermansia muciniphila (A. muciniphila), known for its benefits as a probiotic in treating metabolic syndrome, has uncertain effects in the context of DIC. Here, 16S rRNA sequencing of fecal samples from anthracycline-treated patients and DIC mice revealed marked depletion of A. muciniphila. Cardiac transcriptomics, supported by in vitro experiments, showed that A. muciniphila colonization improved mitochondrial function and alleviated DIC by activating the PPARα/PGC1α signaling pathway in both normal and antibiotic-treated C57BL/6 mice. Further analysis uncovered a restructured microbiome-metabolome network following A. muciniphila administration, which contributed to DIC protection. Notably, A. muciniphila supplementation increased serum levels of the tryptophan metabolite indole-3-propionic acid (IPA), which binds to the cardiac aryl hydrocarbon receptor (AhR), leading to the activation of the PPARα/PGC1α signaling pathway. In conclusion, our study sheds light on the potential of A. muciniphila as a probiotic in mitigating DIC.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"86"},"PeriodicalIF":9.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Akkermansia muciniphila ameliorates doxorubicin-induced cardiotoxicity by regulating PPARα-dependent mitochondrial biogenesis.\",\"authors\":\"Hui Lin, Xian Shao, Haodi Gu, Xinrou Yu, Lingyan He, Jiedong Zhou, Zuoquan Zhong, Shitian Guo, Dan Li, Fei Chen, Yongfei Song, Lili Xu, Ping Wang, Liping Meng, Jufang Chi, Jiangfang Lian\",\"doi\":\"10.1038/s41522-025-00712-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (DOX) is a key chemotherapeutic agent but is also a leading cause of DOX-induced cardiotoxicity (DIC), limiting its clinical use. Akkermansia muciniphila (A. muciniphila), known for its benefits as a probiotic in treating metabolic syndrome, has uncertain effects in the context of DIC. Here, 16S rRNA sequencing of fecal samples from anthracycline-treated patients and DIC mice revealed marked depletion of A. muciniphila. Cardiac transcriptomics, supported by in vitro experiments, showed that A. muciniphila colonization improved mitochondrial function and alleviated DIC by activating the PPARα/PGC1α signaling pathway in both normal and antibiotic-treated C57BL/6 mice. Further analysis uncovered a restructured microbiome-metabolome network following A. muciniphila administration, which contributed to DIC protection. Notably, A. muciniphila supplementation increased serum levels of the tryptophan metabolite indole-3-propionic acid (IPA), which binds to the cardiac aryl hydrocarbon receptor (AhR), leading to the activation of the PPARα/PGC1α signaling pathway. In conclusion, our study sheds light on the potential of A. muciniphila as a probiotic in mitigating DIC.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"86\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00712-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00712-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Akkermansia muciniphila ameliorates doxorubicin-induced cardiotoxicity by regulating PPARα-dependent mitochondrial biogenesis.
Doxorubicin (DOX) is a key chemotherapeutic agent but is also a leading cause of DOX-induced cardiotoxicity (DIC), limiting its clinical use. Akkermansia muciniphila (A. muciniphila), known for its benefits as a probiotic in treating metabolic syndrome, has uncertain effects in the context of DIC. Here, 16S rRNA sequencing of fecal samples from anthracycline-treated patients and DIC mice revealed marked depletion of A. muciniphila. Cardiac transcriptomics, supported by in vitro experiments, showed that A. muciniphila colonization improved mitochondrial function and alleviated DIC by activating the PPARα/PGC1α signaling pathway in both normal and antibiotic-treated C57BL/6 mice. Further analysis uncovered a restructured microbiome-metabolome network following A. muciniphila administration, which contributed to DIC protection. Notably, A. muciniphila supplementation increased serum levels of the tryptophan metabolite indole-3-propionic acid (IPA), which binds to the cardiac aryl hydrocarbon receptor (AhR), leading to the activation of the PPARα/PGC1α signaling pathway. In conclusion, our study sheds light on the potential of A. muciniphila as a probiotic in mitigating DIC.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.