基于Kolmogorov-Arnold网络的电力物联网窃听节点检测。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0321179
Rong Wang, Weibin Jiang, Yanjin Shen, Qiqing Yue, Kan-Lin Hsiung
{"title":"基于Kolmogorov-Arnold网络的电力物联网窃听节点检测。","authors":"Rong Wang, Weibin Jiang, Yanjin Shen, Qiqing Yue, Kan-Lin Hsiung","doi":"10.1371/journal.pone.0321179","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid proliferation of the Power Internet of Things (PIoT) has given rise to severe network security threats, with eavesdropping attacks emerging as a paramount concern. Traditional eavesdropping detection methods struggle to adapt to complex and dynamic attack patterns, necessitating the exploration of more intelligent and efficient anomaly localization approaches. This paper proposes an innovative method for eavesdropping node localization based on Kolmogorov-Arnold Networks (KANs). Leveraging the powerful ability of KANs to approximate arbitrary nonlinear functions, this method constructs an end-to-end mapping from heterogeneous node features to eavesdropping locations through flexible combinations of spline functions. To address the challenges of real-world power grid environments, this paper designs optimization strategies such as adaptive grid refinement and hierarchical sparsity regularization, further enhancing the model's robustness and interpretability. Extensive simulations and experiments on real power grid data demonstrate that the proposed method significantly outperforms traditional machine learning and mainstream deep learning approaches in terms of localization accuracy, generalization ability, and computational efficiency. This paper provides new perspectives and tools for intelligent power grid information security in IoT environments, holding significant innovative value in both theory and practice.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0321179"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detecting eavesdropping nodes in the power Internet of Things based on Kolmogorov-Arnold networks.\",\"authors\":\"Rong Wang, Weibin Jiang, Yanjin Shen, Qiqing Yue, Kan-Lin Hsiung\",\"doi\":\"10.1371/journal.pone.0321179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid proliferation of the Power Internet of Things (PIoT) has given rise to severe network security threats, with eavesdropping attacks emerging as a paramount concern. Traditional eavesdropping detection methods struggle to adapt to complex and dynamic attack patterns, necessitating the exploration of more intelligent and efficient anomaly localization approaches. This paper proposes an innovative method for eavesdropping node localization based on Kolmogorov-Arnold Networks (KANs). Leveraging the powerful ability of KANs to approximate arbitrary nonlinear functions, this method constructs an end-to-end mapping from heterogeneous node features to eavesdropping locations through flexible combinations of spline functions. To address the challenges of real-world power grid environments, this paper designs optimization strategies such as adaptive grid refinement and hierarchical sparsity regularization, further enhancing the model's robustness and interpretability. Extensive simulations and experiments on real power grid data demonstrate that the proposed method significantly outperforms traditional machine learning and mainstream deep learning approaches in terms of localization accuracy, generalization ability, and computational efficiency. This paper provides new perspectives and tools for intelligent power grid information security in IoT environments, holding significant innovative value in both theory and practice.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0321179\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0321179\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0321179","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电力物联网(PIoT)的快速发展带来了严重的网络安全威胁,窃听攻击成为人们最关心的问题。传统的窃听检测方法难以适应复杂、动态的攻击模式,需要探索更智能、更高效的异常定位方法。提出了一种基于Kolmogorov-Arnold网络(KANs)的窃听节点定位方法。该方法利用KANs近似任意非线性函数的强大能力,通过样条函数的灵活组合,构建了从异构节点特征到窃听位置的端到端映射。针对现实电网环境的挑战,本文设计了自适应网格细化和分层稀疏正则化等优化策略,进一步增强了模型的鲁棒性和可解释性。在实际电网数据上进行的大量仿真和实验表明,该方法在定位精度、泛化能力和计算效率方面明显优于传统机器学习和主流深度学习方法。本文为物联网环境下的智能电网信息安全提供了新的视角和工具,具有重要的理论和实践创新价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting eavesdropping nodes in the power Internet of Things based on Kolmogorov-Arnold networks.

The rapid proliferation of the Power Internet of Things (PIoT) has given rise to severe network security threats, with eavesdropping attacks emerging as a paramount concern. Traditional eavesdropping detection methods struggle to adapt to complex and dynamic attack patterns, necessitating the exploration of more intelligent and efficient anomaly localization approaches. This paper proposes an innovative method for eavesdropping node localization based on Kolmogorov-Arnold Networks (KANs). Leveraging the powerful ability of KANs to approximate arbitrary nonlinear functions, this method constructs an end-to-end mapping from heterogeneous node features to eavesdropping locations through flexible combinations of spline functions. To address the challenges of real-world power grid environments, this paper designs optimization strategies such as adaptive grid refinement and hierarchical sparsity regularization, further enhancing the model's robustness and interpretability. Extensive simulations and experiments on real power grid data demonstrate that the proposed method significantly outperforms traditional machine learning and mainstream deep learning approaches in terms of localization accuracy, generalization ability, and computational efficiency. This paper provides new perspectives and tools for intelligent power grid information security in IoT environments, holding significant innovative value in both theory and practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信