Xiao Yu, Mathieu Nollet, Nicholas P Franks, William Wisden
{"title":"睡眠和从压力中恢复。","authors":"Xiao Yu, Mathieu Nollet, Nicholas P Franks, William Wisden","doi":"10.1016/j.neuron.2025.04.028","DOIUrl":null,"url":null,"abstract":"<p><p>The relationship between stress and sleep is multifaceted, with stress capable of both disrupting and promoting sleep depending on the nature, intensity, and duration of the stressor. While stress commonly leads to sleep fragmentation and arousal in both humans and animals, certain selective stressors, such as immune challenges and psychosocial stress, promote sleep in rodent models. Specific neural circuits, such as those involving the ventral tegmental area and lateral habenula, mediate this stress-induced sleep. Post-stress sleep may facilitate recovery, reduce anxiety, and enhance stress resilience, but the extent to which sleep versus wakefulness post-stress aids long-term adaptation is unclear. Both human and animal studies highlight a bidirectional relationship, where stress-induced changes in sleep architecture may have adaptive or maladaptive consequences. Here, we propose that post-stress sleep contributes to resilience and discuss potential mechanisms underlying this process. A deeper understanding of these pathways may provide new strategies for enhancing stress recovery and improving mental health outcomes.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sleep and the recovery from stress.\",\"authors\":\"Xiao Yu, Mathieu Nollet, Nicholas P Franks, William Wisden\",\"doi\":\"10.1016/j.neuron.2025.04.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The relationship between stress and sleep is multifaceted, with stress capable of both disrupting and promoting sleep depending on the nature, intensity, and duration of the stressor. While stress commonly leads to sleep fragmentation and arousal in both humans and animals, certain selective stressors, such as immune challenges and psychosocial stress, promote sleep in rodent models. Specific neural circuits, such as those involving the ventral tegmental area and lateral habenula, mediate this stress-induced sleep. Post-stress sleep may facilitate recovery, reduce anxiety, and enhance stress resilience, but the extent to which sleep versus wakefulness post-stress aids long-term adaptation is unclear. Both human and animal studies highlight a bidirectional relationship, where stress-induced changes in sleep architecture may have adaptive or maladaptive consequences. Here, we propose that post-stress sleep contributes to resilience and discuss potential mechanisms underlying this process. A deeper understanding of these pathways may provide new strategies for enhancing stress recovery and improving mental health outcomes.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.04.028\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.04.028","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The relationship between stress and sleep is multifaceted, with stress capable of both disrupting and promoting sleep depending on the nature, intensity, and duration of the stressor. While stress commonly leads to sleep fragmentation and arousal in both humans and animals, certain selective stressors, such as immune challenges and psychosocial stress, promote sleep in rodent models. Specific neural circuits, such as those involving the ventral tegmental area and lateral habenula, mediate this stress-induced sleep. Post-stress sleep may facilitate recovery, reduce anxiety, and enhance stress resilience, but the extent to which sleep versus wakefulness post-stress aids long-term adaptation is unclear. Both human and animal studies highlight a bidirectional relationship, where stress-induced changes in sleep architecture may have adaptive or maladaptive consequences. Here, we propose that post-stress sleep contributes to resilience and discuss potential mechanisms underlying this process. A deeper understanding of these pathways may provide new strategies for enhancing stress recovery and improving mental health outcomes.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.