Yuyao Wang, Yuzhou Zhang, Haoyu Chen, Xiu Juan Zhang, Riping Zhang, Tsz Kin Ng, Jenson A Tham, Ka Wai Kam, Pancy O S Tam, Alvin L Young, Yingying Wei, Mingzhi Zhang, Chi Pui Pang, Clement C Tham, Jason C Yam, Li Jia Chen
{"title":"全基因组关联研究发现儿童屈光不正的新位点和基因-环境相互作用。","authors":"Yuyao Wang, Yuzhou Zhang, Haoyu Chen, Xiu Juan Zhang, Riping Zhang, Tsz Kin Ng, Jenson A Tham, Ka Wai Kam, Pancy O S Tam, Alvin L Young, Yingying Wei, Mingzhi Zhang, Chi Pui Pang, Clement C Tham, Jason C Yam, Li Jia Chen","doi":"10.1038/s41525-025-00504-5","DOIUrl":null,"url":null,"abstract":"<p><p>To identify novel genetic loci for children refractive error, we performed a meta-analysis of two genome-wide association studies (GWASs) of spherical equivalent (SE) in 1,237 children from the population-based Hong Kong Children Eye Study (HKCES) and the Low Concentration Atropine for Myopia Progression (LAMP) study. Replication was conducted in 4,093 Chinese children and 1,814 Chinese adults. Four lead-SNPs (MIR4275 rs292034, TENM3 rs17074027, LOC101928911 rs6925312 and FAM135B rs4609227) showed genome-wide significant association (P ≤ 5.0 × 10<sup>-8</sup>) with SE. TENM3 had been associated with myopia in adults before, whilst the other three loci, MIR4275, LOC101928911 and FAM135B, were novel. Significant interaction between genetic risk scores (GRS) and near work on SE was also detected (β<sub>interaction</sub> = 0.14, P<sub>interaction</sub> = 0.0003). This study identified novel genetic loci for children refractive error and suggested myopia intervention can be individualized based on the genetic risk of children.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"44"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102314/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide association study identified novel loci and gene-environment interaction for refractive error in children.\",\"authors\":\"Yuyao Wang, Yuzhou Zhang, Haoyu Chen, Xiu Juan Zhang, Riping Zhang, Tsz Kin Ng, Jenson A Tham, Ka Wai Kam, Pancy O S Tam, Alvin L Young, Yingying Wei, Mingzhi Zhang, Chi Pui Pang, Clement C Tham, Jason C Yam, Li Jia Chen\",\"doi\":\"10.1038/s41525-025-00504-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To identify novel genetic loci for children refractive error, we performed a meta-analysis of two genome-wide association studies (GWASs) of spherical equivalent (SE) in 1,237 children from the population-based Hong Kong Children Eye Study (HKCES) and the Low Concentration Atropine for Myopia Progression (LAMP) study. Replication was conducted in 4,093 Chinese children and 1,814 Chinese adults. Four lead-SNPs (MIR4275 rs292034, TENM3 rs17074027, LOC101928911 rs6925312 and FAM135B rs4609227) showed genome-wide significant association (P ≤ 5.0 × 10<sup>-8</sup>) with SE. TENM3 had been associated with myopia in adults before, whilst the other three loci, MIR4275, LOC101928911 and FAM135B, were novel. Significant interaction between genetic risk scores (GRS) and near work on SE was also detected (β<sub>interaction</sub> = 0.14, P<sub>interaction</sub> = 0.0003). This study identified novel genetic loci for children refractive error and suggested myopia intervention can be individualized based on the genetic risk of children.</p>\",\"PeriodicalId\":19273,\"journal\":{\"name\":\"NPJ Genomic Medicine\",\"volume\":\"10 1\",\"pages\":\"44\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102314/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41525-025-00504-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00504-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genome-wide association study identified novel loci and gene-environment interaction for refractive error in children.
To identify novel genetic loci for children refractive error, we performed a meta-analysis of two genome-wide association studies (GWASs) of spherical equivalent (SE) in 1,237 children from the population-based Hong Kong Children Eye Study (HKCES) and the Low Concentration Atropine for Myopia Progression (LAMP) study. Replication was conducted in 4,093 Chinese children and 1,814 Chinese adults. Four lead-SNPs (MIR4275 rs292034, TENM3 rs17074027, LOC101928911 rs6925312 and FAM135B rs4609227) showed genome-wide significant association (P ≤ 5.0 × 10-8) with SE. TENM3 had been associated with myopia in adults before, whilst the other three loci, MIR4275, LOC101928911 and FAM135B, were novel. Significant interaction between genetic risk scores (GRS) and near work on SE was also detected (βinteraction = 0.14, Pinteraction = 0.0003). This study identified novel genetic loci for children refractive error and suggested myopia intervention can be individualized based on the genetic risk of children.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.