新型荧光合成类维生素a作为潜在的抗肿瘤、分子对接和ADME评估的RAR激动剂。

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Esraa Ibrahim, Yara E Mansour, Sameh Soror, Hesham Haffez
{"title":"新型荧光合成类维生素a作为潜在的抗肿瘤、分子对接和ADME评估的RAR激动剂。","authors":"Esraa Ibrahim, Yara E Mansour, Sameh Soror, Hesham Haffez","doi":"10.1007/s10895-025-04343-6","DOIUrl":null,"url":null,"abstract":"<p><p>Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG<sub>0</sub>-G<sub>1</sub> phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Fluorescent Synthetic Retinoids as Potential RAR Agonists with Anticancer, Molecular Docking and ADME Assessments.\",\"authors\":\"Esraa Ibrahim, Yara E Mansour, Sameh Soror, Hesham Haffez\",\"doi\":\"10.1007/s10895-025-04343-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG<sub>0</sub>-G<sub>1</sub> phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-025-04343-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04343-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

天然和合成的类维生素A是维生素A的衍生物,介导不同的转录活性。荧光探针的合成可以成为细胞成像和理解不同调控信号通路的有用工具。本研究制备了新的荧光合成类维生素a类似物(3a, 3b, 4a和4b),并对6种不同的癌症和正常细胞系进行了生物筛选,以评估其抗癌和荧光活性。结合MTT、流式细胞术、基因和蛋白表达分析、DNA片段化、atp酶活性分析以及计算机和ADME研究等生物检测进行研究。所有新化合物对不同类型的癌细胞均表现出抗增殖活性(2.09-132.70µM),且细胞毒性最小(SI > 1),并选择Caco-2癌细胞系进行进一步的体外研究。所有化合物均显示细胞周期阻滞在SubG0-G1期,并诱导早期凋亡和坏死。化合物4b通过过表达Caspase-3和Cyt-c基因表现出明显的凋亡作用,其次是化合物3a。所有化合物均通过显著下调IL-10促炎标志物显示抗炎活性,而化合物3b、4a和4b特异性下调IL-6。通过分子对接和分子动力学模拟研究,证实视黄酸受体(Retinoic acid receptor, RARs)在基因和蛋白水平上均存在过表达。所有荧光化合物均显示细胞内荧光发射光谱,具有细胞内亲脂性。新型荧光合成类维生素a具有双重抗癌活性和荧光特性,可作为多种细胞成像研究的有用探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Fluorescent Synthetic Retinoids as Potential RAR Agonists with Anticancer, Molecular Docking and ADME Assessments.

Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG0-G1 phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信