Esraa Ibrahim, Yara E Mansour, Sameh Soror, Hesham Haffez
{"title":"新型荧光合成类维生素a作为潜在的抗肿瘤、分子对接和ADME评估的RAR激动剂。","authors":"Esraa Ibrahim, Yara E Mansour, Sameh Soror, Hesham Haffez","doi":"10.1007/s10895-025-04343-6","DOIUrl":null,"url":null,"abstract":"<p><p>Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG<sub>0</sub>-G<sub>1</sub> phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Fluorescent Synthetic Retinoids as Potential RAR Agonists with Anticancer, Molecular Docking and ADME Assessments.\",\"authors\":\"Esraa Ibrahim, Yara E Mansour, Sameh Soror, Hesham Haffez\",\"doi\":\"10.1007/s10895-025-04343-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG<sub>0</sub>-G<sub>1</sub> phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-025-04343-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04343-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
New Fluorescent Synthetic Retinoids as Potential RAR Agonists with Anticancer, Molecular Docking and ADME Assessments.
Natural and synthetic retinoids are derivatives of vitamin A that mediate different transcriptional activities. Synthesis of fluorescent probes can be a useful tool in cellular imaging and understanding different regulatory signaling pathways. In this study, new fluorescent synthetic retinoid analogues (3a, 3b, 4a, and 4b) were prepared and biologically screened against six different cancer and normal cell lines for assessment of their anticancer and fluorescent activities. A combination of biological assays, such as MTT, flow cytometry, gene and protein expression analysis, DNA fragmentation, and ATPase activity assays, as well as in-silico and ADME studies, was performed. All new compounds showed anti-proliferative activity (2.09-132.70 µM) against different cancer cell types with minimal cytotoxicity (SI > 1), and the Caco-2 cancer cell line was selected for further in vitro investigation. All compounds showed cell cycle arrest at the SubG0-G1 phase with induction of early apoptosis and necrosis. Compound 4b showed a significant apoptotic effect by overexpression of Caspase-3 and Cyt-c genes, followed by compound 3a. All compounds showed anti-inflammatory activity by significantly down-regulating the IL-10 pro-inflammatory marker, while compounds 3b, 4a, and 4b specifically down-regulated IL-6. Retinoic acid receptors (RARs) were suggested as molecular targets confirmed by their overexpression of both gene and protein levels with molecular docking and molecular dynamic simulation studies. All fluorescent compounds showed intracellular fluorescent emission spectra with intracellular lipophilic properties. The new fluorescent synthetic retinoids showed dual activities as anticancer agents with fluorescence properties and can be used as useful probes in a variety of cellular imaging investigations.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.