Nianrui Wang, Shumin Zhao, Ziwei Li, Jianqiang Sun, Ming Yi
{"title":"基于深度图卷积网络的药物-靶标相互作用预测双线性注意网络。","authors":"Nianrui Wang, Shumin Zhao, Ziwei Li, Jianqiang Sun, Ming Yi","doi":"10.1007/s12539-025-00714-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Backgrounds: </strong>During the development of new drugs, it is essential to assess their effectiveness and examine the potential mechanisms behind side effects. This process typically involves combining the analysis of drugs under development with relevant existing drugs to more precisely evaluate the effects of drugs and targets. The use of deep learning methods to analyze this problem is currently a research hotspot, but several limitations remain: (i) how to deepen the analysis from the molecular level to the atomic level and analyze the key substructures that affect interactions on the basis of pharmaceutical mechanisms; (ii) how to integrate biomedical analysis with deep learning methods to make it medically sound and enhance interpretability.</p><p><strong>Methods: </strong>To address the limitations of existing research, based on Deep Graph Convolutional Network (Deep-GCN) and Bilinear Attention Network (BAN), we have constructed an interpretable deep learning framework, WDGBANDTI, to analyze and predict drug‒target interactions at the substructure level and enhance the prediction capability of the model with respect to unidentified target pairings by adding modules.</p><p><strong>Results: </strong>For different application scenarios, we validated the model via several commonly used and highly covered datasets. We also selected several state-of-the-art computer methods as comparison objects, and our model demonstrates advantages in accuracy, sensitivity, specificity, and other deep learning features. More importantly, the model can identify the substructures that play a role in drug‒target interactions through BAN, highlighting its excellent interpretability.</p><p><strong>Conclusion: </strong>In conclusion, we believe that our work will contribute to advancements in drug development and side effect experiments and provide meaningful guidance for drug design.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WDGBANDTI: A Deep Graph Convolutional Network-Based Bilinear Attention Network for Drug-Target Interaction Prediction with Domain Adaptation.\",\"authors\":\"Nianrui Wang, Shumin Zhao, Ziwei Li, Jianqiang Sun, Ming Yi\",\"doi\":\"10.1007/s12539-025-00714-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Backgrounds: </strong>During the development of new drugs, it is essential to assess their effectiveness and examine the potential mechanisms behind side effects. This process typically involves combining the analysis of drugs under development with relevant existing drugs to more precisely evaluate the effects of drugs and targets. The use of deep learning methods to analyze this problem is currently a research hotspot, but several limitations remain: (i) how to deepen the analysis from the molecular level to the atomic level and analyze the key substructures that affect interactions on the basis of pharmaceutical mechanisms; (ii) how to integrate biomedical analysis with deep learning methods to make it medically sound and enhance interpretability.</p><p><strong>Methods: </strong>To address the limitations of existing research, based on Deep Graph Convolutional Network (Deep-GCN) and Bilinear Attention Network (BAN), we have constructed an interpretable deep learning framework, WDGBANDTI, to analyze and predict drug‒target interactions at the substructure level and enhance the prediction capability of the model with respect to unidentified target pairings by adding modules.</p><p><strong>Results: </strong>For different application scenarios, we validated the model via several commonly used and highly covered datasets. We also selected several state-of-the-art computer methods as comparison objects, and our model demonstrates advantages in accuracy, sensitivity, specificity, and other deep learning features. More importantly, the model can identify the substructures that play a role in drug‒target interactions through BAN, highlighting its excellent interpretability.</p><p><strong>Conclusion: </strong>In conclusion, we believe that our work will contribute to advancements in drug development and side effect experiments and provide meaningful guidance for drug design.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00714-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00714-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
WDGBANDTI: A Deep Graph Convolutional Network-Based Bilinear Attention Network for Drug-Target Interaction Prediction with Domain Adaptation.
Backgrounds: During the development of new drugs, it is essential to assess their effectiveness and examine the potential mechanisms behind side effects. This process typically involves combining the analysis of drugs under development with relevant existing drugs to more precisely evaluate the effects of drugs and targets. The use of deep learning methods to analyze this problem is currently a research hotspot, but several limitations remain: (i) how to deepen the analysis from the molecular level to the atomic level and analyze the key substructures that affect interactions on the basis of pharmaceutical mechanisms; (ii) how to integrate biomedical analysis with deep learning methods to make it medically sound and enhance interpretability.
Methods: To address the limitations of existing research, based on Deep Graph Convolutional Network (Deep-GCN) and Bilinear Attention Network (BAN), we have constructed an interpretable deep learning framework, WDGBANDTI, to analyze and predict drug‒target interactions at the substructure level and enhance the prediction capability of the model with respect to unidentified target pairings by adding modules.
Results: For different application scenarios, we validated the model via several commonly used and highly covered datasets. We also selected several state-of-the-art computer methods as comparison objects, and our model demonstrates advantages in accuracy, sensitivity, specificity, and other deep learning features. More importantly, the model can identify the substructures that play a role in drug‒target interactions through BAN, highlighting its excellent interpretability.
Conclusion: In conclusion, we believe that our work will contribute to advancements in drug development and side effect experiments and provide meaningful guidance for drug design.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.