Mérilie Gagnon, Jessica Houde, Stéphane Corriveau, Carmen Charron, Luc Lagacé
{"title":"接种3株假单胞菌采集系统对枫糖浆微生物及感官品质的影响。","authors":"Mérilie Gagnon, Jessica Houde, Stéphane Corriveau, Carmen Charron, Luc Lagacé","doi":"10.1139/cjm-2024-0225","DOIUrl":null,"url":null,"abstract":"<p><p>As it flows through the collection system, maple sap is likely to be contaminated by microorganisms that colonize the tubing, potentially compromising its quality in terms of physicochemical properties, microbial load, and flavor. This study investigates the effect of microbial inoculation, as protective cultures, on the sap collection system to improve maple syrup quality. The research explored how inoculating collection tubing with specific bacterial strains influences the microbial composition, physicochemical properties (pH, Brix, conductivity, sugars and organic acids content), and sensory attributes of both maple sap and syrup. Three strains selected for their capacity to produce biofilm on plastic tubing and their impact on maple syrup production from inoculated sap, Pseudomonas sp. MSB2019, Janthinobacterium lividum 100-P12-9, and Pseudomonas fluorescens ATCC 17926, were inoculated to independent sap collection system throughout two sugaring seasons. A non-inoculated systems was included. Pseudomonas sp. MSB2019 treatment resulted in a distinct bacterial composition in sap and impact the organoleptic properties of syrup by the end of second flow season, particularly the maple and overall flavor intensity scores were higher. While sap yield and primary microbial load remained unaffected, inoculation treatments corresponded to shifts in flavor attributes of the syrup. These findings indicate that inoculating sap collection systems with targeted strains can positively influence maple syrup quality, particularly in enhancing desirable flavor profiles, suggesting promising applications for syrup production.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of inoculation of the sap collection system with three Pseudomonadota strains on maple syrup microbial and organoleptic quality.\",\"authors\":\"Mérilie Gagnon, Jessica Houde, Stéphane Corriveau, Carmen Charron, Luc Lagacé\",\"doi\":\"10.1139/cjm-2024-0225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As it flows through the collection system, maple sap is likely to be contaminated by microorganisms that colonize the tubing, potentially compromising its quality in terms of physicochemical properties, microbial load, and flavor. This study investigates the effect of microbial inoculation, as protective cultures, on the sap collection system to improve maple syrup quality. The research explored how inoculating collection tubing with specific bacterial strains influences the microbial composition, physicochemical properties (pH, Brix, conductivity, sugars and organic acids content), and sensory attributes of both maple sap and syrup. Three strains selected for their capacity to produce biofilm on plastic tubing and their impact on maple syrup production from inoculated sap, Pseudomonas sp. MSB2019, Janthinobacterium lividum 100-P12-9, and Pseudomonas fluorescens ATCC 17926, were inoculated to independent sap collection system throughout two sugaring seasons. A non-inoculated systems was included. Pseudomonas sp. MSB2019 treatment resulted in a distinct bacterial composition in sap and impact the organoleptic properties of syrup by the end of second flow season, particularly the maple and overall flavor intensity scores were higher. While sap yield and primary microbial load remained unaffected, inoculation treatments corresponded to shifts in flavor attributes of the syrup. These findings indicate that inoculating sap collection systems with targeted strains can positively influence maple syrup quality, particularly in enhancing desirable flavor profiles, suggesting promising applications for syrup production.</p>\",\"PeriodicalId\":9381,\"journal\":{\"name\":\"Canadian journal of microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2024-0225\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0225","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Impact of inoculation of the sap collection system with three Pseudomonadota strains on maple syrup microbial and organoleptic quality.
As it flows through the collection system, maple sap is likely to be contaminated by microorganisms that colonize the tubing, potentially compromising its quality in terms of physicochemical properties, microbial load, and flavor. This study investigates the effect of microbial inoculation, as protective cultures, on the sap collection system to improve maple syrup quality. The research explored how inoculating collection tubing with specific bacterial strains influences the microbial composition, physicochemical properties (pH, Brix, conductivity, sugars and organic acids content), and sensory attributes of both maple sap and syrup. Three strains selected for their capacity to produce biofilm on plastic tubing and their impact on maple syrup production from inoculated sap, Pseudomonas sp. MSB2019, Janthinobacterium lividum 100-P12-9, and Pseudomonas fluorescens ATCC 17926, were inoculated to independent sap collection system throughout two sugaring seasons. A non-inoculated systems was included. Pseudomonas sp. MSB2019 treatment resulted in a distinct bacterial composition in sap and impact the organoleptic properties of syrup by the end of second flow season, particularly the maple and overall flavor intensity scores were higher. While sap yield and primary microbial load remained unaffected, inoculation treatments corresponded to shifts in flavor attributes of the syrup. These findings indicate that inoculating sap collection systems with targeted strains can positively influence maple syrup quality, particularly in enhancing desirable flavor profiles, suggesting promising applications for syrup production.
期刊介绍:
Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.