研究题目:Schatzker IV-C型胫骨平台骨折五种内固定方式的有限元分析。

IF 2.2 3区 医学 Q2 ORTHOPEDICS
Zulong Zhou, Run Fang, Yulong Liu, Mingxiang Liu, Lingchao Kong, Rende Ning
{"title":"研究题目:Schatzker IV-C型胫骨平台骨折五种内固定方式的有限元分析。","authors":"Zulong Zhou, Run Fang, Yulong Liu, Mingxiang Liu, Lingchao Kong, Rende Ning","doi":"10.1186/s12891-025-08770-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to evaluate the biomechanical performance of five different internal fixation strategies for Schatzker type IV-C tibial plateau fractures using three-dimensional finite element analysis. By analyzing stress distribution and displacement patterns under physiological load, we seek to identify optimal fixation modalities for clinical application.</p><p><strong>Methods: </strong>We established a three-dimensional finite element model of Schatzker IV-C tibial plateau fractures and evaluated five internal fixation modalities via finite element analysis. These modalities included a medial plate (Model 1), a medial plate with two posterior tension screws (Model 2), a medial plate with two lateral tension screws (Model 3), a posterior medial double plate (Model 4), and a medial lateral double plate (Model 5). To simulate the biomechanics of unilateral knee axial compression during normal adult gait, an axial force of 1,200 newtons (N) was applied, with 60% of the force distributed to the medial plate. We comprehensively analyzed equivalent von Mises stresses, displacements, and equivalent stress-displacement plots for each fixation.</p><p><strong>Results: </strong>Model 5 demonstrated the best overall performance in terms of internal fixation stress (91.46 MPa) and fracture block stress (10.826 MPa), suggesting optimal stress distribution and fracture block protection. Model 3 performed best in terms of internal fixation displacement (4.391 mm), suggesting an advantage in fracture block stability. While the models performed well in several areas, the double plate fixation scheme was superior in terms of stress distribution and fracture stability. It is ideal for managing complex fractures.</p><p><strong>Conclusions: </strong>A single medial plate (Model 1) provides adequate fixation and stability for fractures without the lateral intercondylar ridge. Lag screws with the medial plate (Models 2 and 3) effectively reduce stress and minimize trauma. Double plate on the posterior medial side (Model 4) significantly enhances fixation and prevents displacement for complex fractures. Medial-lateral double plate fixation (Model 5) provides the most favorable biomechanical stability for fractures with extensive lateral plateau comminution. However, balance the benefits against increased complexity, particularly in patients with compromised soft tissue or high functional demands. Selecting internal fixation based on the fracture line can optimize outcomes and speed recovery.</p>","PeriodicalId":9189,"journal":{"name":"BMC Musculoskeletal Disorders","volume":"26 1","pages":"509"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Title of the study: finite element analysis of five internal fixation modalities for Schatzker type IV‒C tibial plateau fractures.\",\"authors\":\"Zulong Zhou, Run Fang, Yulong Liu, Mingxiang Liu, Lingchao Kong, Rende Ning\",\"doi\":\"10.1186/s12891-025-08770-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aims to evaluate the biomechanical performance of five different internal fixation strategies for Schatzker type IV-C tibial plateau fractures using three-dimensional finite element analysis. By analyzing stress distribution and displacement patterns under physiological load, we seek to identify optimal fixation modalities for clinical application.</p><p><strong>Methods: </strong>We established a three-dimensional finite element model of Schatzker IV-C tibial plateau fractures and evaluated five internal fixation modalities via finite element analysis. These modalities included a medial plate (Model 1), a medial plate with two posterior tension screws (Model 2), a medial plate with two lateral tension screws (Model 3), a posterior medial double plate (Model 4), and a medial lateral double plate (Model 5). To simulate the biomechanics of unilateral knee axial compression during normal adult gait, an axial force of 1,200 newtons (N) was applied, with 60% of the force distributed to the medial plate. We comprehensively analyzed equivalent von Mises stresses, displacements, and equivalent stress-displacement plots for each fixation.</p><p><strong>Results: </strong>Model 5 demonstrated the best overall performance in terms of internal fixation stress (91.46 MPa) and fracture block stress (10.826 MPa), suggesting optimal stress distribution and fracture block protection. Model 3 performed best in terms of internal fixation displacement (4.391 mm), suggesting an advantage in fracture block stability. While the models performed well in several areas, the double plate fixation scheme was superior in terms of stress distribution and fracture stability. It is ideal for managing complex fractures.</p><p><strong>Conclusions: </strong>A single medial plate (Model 1) provides adequate fixation and stability for fractures without the lateral intercondylar ridge. Lag screws with the medial plate (Models 2 and 3) effectively reduce stress and minimize trauma. Double plate on the posterior medial side (Model 4) significantly enhances fixation and prevents displacement for complex fractures. Medial-lateral double plate fixation (Model 5) provides the most favorable biomechanical stability for fractures with extensive lateral plateau comminution. However, balance the benefits against increased complexity, particularly in patients with compromised soft tissue or high functional demands. Selecting internal fixation based on the fracture line can optimize outcomes and speed recovery.</p>\",\"PeriodicalId\":9189,\"journal\":{\"name\":\"BMC Musculoskeletal Disorders\",\"volume\":\"26 1\",\"pages\":\"509\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Musculoskeletal Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12891-025-08770-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Musculoskeletal Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12891-025-08770-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究旨在通过三维有限元分析评估Schatzker IV-C型胫骨平台骨折的五种不同内固定策略的生物力学性能。通过分析生理负荷下的应力分布和位移模式,我们寻求确定临床应用的最佳固定方式。方法:建立Schatzker IV-C型胫骨平台骨折的三维有限元模型,通过有限元分析评估5种内固定方式。这些模式包括一个内侧钢板(模型1)、一个内侧钢板加两个后部张力螺钉(模型2)、一个内侧钢板加两个外侧张力螺钉(模型3)、一个后部内侧双钢板(模型4)和一个内侧外侧双钢板(模型5)。为了模拟正常成人步态下单侧膝关节轴向压迫的生物力学,施加1200牛顿(N)的轴向力,其中60%的力分布在内侧板上。我们全面分析了每次固定的等效von Mises应力、位移和等效应力-位移图。结果:模型5在内固定应力(91.46 MPa)和骨折块应力(10.826 MPa)方面的综合性能最佳,表明应力分布和骨折块保护最佳。模型3在内固定位移方面表现最好(4.391 mm),在骨折块稳定性方面具有优势。虽然模型在某些方面表现良好,但双钢板固定方案在应力分布和骨折稳定性方面更胜一筹。它是治疗复杂骨折的理想选择。结论:单一内侧钢板(模型1)可为无外侧髁间脊的骨折提供足够的固定和稳定性。带内侧钢板的拉力螺钉(模型2和模型3)有效地减轻了压力,使创伤最小化。后内侧双钢板(模型4)显著增强固定,防止复杂骨折移位。内侧-外侧双钢板固定(模型5)为外侧平台粉碎性骨折提供了最有利的生物力学稳定性。然而,平衡益处与增加的复杂性,特别是在软组织受损或功能要求高的患者。根据骨折线选择内固定可优化治疗效果,加快康复速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Title of the study: finite element analysis of five internal fixation modalities for Schatzker type IV‒C tibial plateau fractures.

Background: This study aims to evaluate the biomechanical performance of five different internal fixation strategies for Schatzker type IV-C tibial plateau fractures using three-dimensional finite element analysis. By analyzing stress distribution and displacement patterns under physiological load, we seek to identify optimal fixation modalities for clinical application.

Methods: We established a three-dimensional finite element model of Schatzker IV-C tibial plateau fractures and evaluated five internal fixation modalities via finite element analysis. These modalities included a medial plate (Model 1), a medial plate with two posterior tension screws (Model 2), a medial plate with two lateral tension screws (Model 3), a posterior medial double plate (Model 4), and a medial lateral double plate (Model 5). To simulate the biomechanics of unilateral knee axial compression during normal adult gait, an axial force of 1,200 newtons (N) was applied, with 60% of the force distributed to the medial plate. We comprehensively analyzed equivalent von Mises stresses, displacements, and equivalent stress-displacement plots for each fixation.

Results: Model 5 demonstrated the best overall performance in terms of internal fixation stress (91.46 MPa) and fracture block stress (10.826 MPa), suggesting optimal stress distribution and fracture block protection. Model 3 performed best in terms of internal fixation displacement (4.391 mm), suggesting an advantage in fracture block stability. While the models performed well in several areas, the double plate fixation scheme was superior in terms of stress distribution and fracture stability. It is ideal for managing complex fractures.

Conclusions: A single medial plate (Model 1) provides adequate fixation and stability for fractures without the lateral intercondylar ridge. Lag screws with the medial plate (Models 2 and 3) effectively reduce stress and minimize trauma. Double plate on the posterior medial side (Model 4) significantly enhances fixation and prevents displacement for complex fractures. Medial-lateral double plate fixation (Model 5) provides the most favorable biomechanical stability for fractures with extensive lateral plateau comminution. However, balance the benefits against increased complexity, particularly in patients with compromised soft tissue or high functional demands. Selecting internal fixation based on the fracture line can optimize outcomes and speed recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Musculoskeletal Disorders
BMC Musculoskeletal Disorders 医学-风湿病学
CiteScore
3.80
自引率
8.70%
发文量
1017
审稿时长
3-6 weeks
期刊介绍: BMC Musculoskeletal Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of musculoskeletal disorders, as well as related molecular genetics, pathophysiology, and epidemiology. The scope of the Journal covers research into rheumatic diseases where the primary focus relates specifically to a component(s) of the musculoskeletal system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信