{"title":"高效倒置无html的sm2nimno6基钙钛矿太阳能电池:SCAPS-1D研究","authors":"Nassim Ahmed Mahammedi","doi":"10.1007/s40243-025-00308-8","DOIUrl":null,"url":null,"abstract":"<div><p>The transition to sustainable energy has driven extensive research into perovskite solar cells (PSCs) as promising candidates for next-generation photovoltaics. Despite their remarkable efficiencies, the commercialization of PSCs remains hindered by lead toxicity and material instability. In this study, we investigate a lead-free samarium-based double perovskite oxide, Sm<sub>2</sub>NiMnO<sub>6</sub> (SNMO), as the active absorber layer in an innovative inverted, hole transport layer (HTL)-free PSC architecture. Using SCAPS-1D simulations, we optimized the device configuration and achieved a power conversion efficiency (PCE) of 10.93%, with an open-circuit voltage (V<sub>OC</sub>) of 0.8 V, a short-circuit current density (J<sub>SC</sub>) of 16.46 mA cm<sup>−2</sup>, and a fill factor (FF) of 82.14%. Notably, increasing the SNMO absorber thickness enhanced light absorption in the red spectral region, shifting the external quantum efficiency (EQE) peak from 380 nm wavelength at a thickness of 50 nm to approximately 620 nm at 1 µm. Furthermore, we investigated various electron transport layers (ETLs) and found that the indium tin oxide (ITO) exhibited superior PV performances, boosting the PCE to ~ 12.6% due to its excellent conductivity and optimal energy band alignment with SNMO. These findings establish SNMO as a promising absorber material for environmentally friendly PSCs, paving the way for cheaper, simpler, scalable, and sustainable photovoltaic solutions. This work highlights the potential of HTL-free architectures to reduce costs and complexities while maintaining competitive efficiencies, marking a significant step forward in the development of lead-free solar technologies.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00308-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient inverted HTL-free Sm2NiMnO6-based perovskite solar cell: a SCAPS-1D study\",\"authors\":\"Nassim Ahmed Mahammedi\",\"doi\":\"10.1007/s40243-025-00308-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The transition to sustainable energy has driven extensive research into perovskite solar cells (PSCs) as promising candidates for next-generation photovoltaics. Despite their remarkable efficiencies, the commercialization of PSCs remains hindered by lead toxicity and material instability. In this study, we investigate a lead-free samarium-based double perovskite oxide, Sm<sub>2</sub>NiMnO<sub>6</sub> (SNMO), as the active absorber layer in an innovative inverted, hole transport layer (HTL)-free PSC architecture. Using SCAPS-1D simulations, we optimized the device configuration and achieved a power conversion efficiency (PCE) of 10.93%, with an open-circuit voltage (V<sub>OC</sub>) of 0.8 V, a short-circuit current density (J<sub>SC</sub>) of 16.46 mA cm<sup>−2</sup>, and a fill factor (FF) of 82.14%. Notably, increasing the SNMO absorber thickness enhanced light absorption in the red spectral region, shifting the external quantum efficiency (EQE) peak from 380 nm wavelength at a thickness of 50 nm to approximately 620 nm at 1 µm. Furthermore, we investigated various electron transport layers (ETLs) and found that the indium tin oxide (ITO) exhibited superior PV performances, boosting the PCE to ~ 12.6% due to its excellent conductivity and optimal energy band alignment with SNMO. These findings establish SNMO as a promising absorber material for environmentally friendly PSCs, paving the way for cheaper, simpler, scalable, and sustainable photovoltaic solutions. This work highlights the potential of HTL-free architectures to reduce costs and complexities while maintaining competitive efficiencies, marking a significant step forward in the development of lead-free solar technologies.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00308-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00308-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00308-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
向可持续能源的过渡推动了对钙钛矿太阳能电池(PSCs)作为下一代光伏电池的有前途的候选者的广泛研究。尽管它们具有显著的效率,但由于铅毒性和材料不稳定性,PSCs的商业化仍然受到阻碍。在这项研究中,我们研究了一种无铅的钐基双钙钛矿氧化物Sm2NiMnO6 (SNMO)作为一种创新的倒置、空穴传输层(HTL)无PSC结构的活性吸收层。通过SCAPS-1D仿真,我们优化了器件配置,实现了10.93%的功率转换效率(PCE),开路电压(VOC)为0.8 V,短路电流密度(JSC)为16.46 mA cm−2,填充因子(FF)为82.14%。值得注意的是,增加SNMO吸收剂的厚度可以增强红色光谱区的光吸收,将外量子效率(EQE)峰从厚度为50 nm处的380 nm波长移动到厚度为1µm处的约620 nm。此外,我们研究了不同的电子传输层(etl),发现氧化铟锡(ITO)表现出优异的PV性能,由于其优异的导电性和与SNMO的最佳能带排列,PCE提高到~ 12.6%。这些发现确立了SNMO作为环境友好型psc的有前途的吸收材料,为更便宜、更简单、可扩展和可持续的光伏解决方案铺平了道路。这项工作强调了无html架构在保持竞争效率的同时降低成本和复杂性的潜力,标志着无铅太阳能技术的发展向前迈出了重要一步。
Efficient inverted HTL-free Sm2NiMnO6-based perovskite solar cell: a SCAPS-1D study
The transition to sustainable energy has driven extensive research into perovskite solar cells (PSCs) as promising candidates for next-generation photovoltaics. Despite their remarkable efficiencies, the commercialization of PSCs remains hindered by lead toxicity and material instability. In this study, we investigate a lead-free samarium-based double perovskite oxide, Sm2NiMnO6 (SNMO), as the active absorber layer in an innovative inverted, hole transport layer (HTL)-free PSC architecture. Using SCAPS-1D simulations, we optimized the device configuration and achieved a power conversion efficiency (PCE) of 10.93%, with an open-circuit voltage (VOC) of 0.8 V, a short-circuit current density (JSC) of 16.46 mA cm−2, and a fill factor (FF) of 82.14%. Notably, increasing the SNMO absorber thickness enhanced light absorption in the red spectral region, shifting the external quantum efficiency (EQE) peak from 380 nm wavelength at a thickness of 50 nm to approximately 620 nm at 1 µm. Furthermore, we investigated various electron transport layers (ETLs) and found that the indium tin oxide (ITO) exhibited superior PV performances, boosting the PCE to ~ 12.6% due to its excellent conductivity and optimal energy band alignment with SNMO. These findings establish SNMO as a promising absorber material for environmentally friendly PSCs, paving the way for cheaper, simpler, scalable, and sustainable photovoltaic solutions. This work highlights the potential of HTL-free architectures to reduce costs and complexities while maintaining competitive efficiencies, marking a significant step forward in the development of lead-free solar technologies.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies