{"title":"使用分布式移动机器人团队有效跟踪未知集群目标","authors":"Jun Chen, Philip Dames, Shinkyu Park","doi":"10.1007/s10514-025-10200-z","DOIUrl":null,"url":null,"abstract":"<div><p>Distributed multi-target tracking is a canonical task for multi-robot systems, encompassing applications from environmental monitoring to disaster response to surveillance. In many situations the unknown distribution of the targets in a search area is non-uniform, e.g., herds of animals moving together. This paper develops a novel distributed multi-robot multi-target tracking algorithm to effectively search for and track clustered targets. There are two key features. First, there are two parallel estimators, one to provide the best guess of the current states of targets and a second to provide a coarse, long-term distribution of clusters. Second, robots use the power diagram to divide the search space between agents in a way that effectively trades off between tracking detected targets within high density areas and searching for other potential targets. Extensive simulation experiments demonstrate the efficacy of the proposed method and show that it outperforms other approaches in tracking accuracy of clustered targets while maintain good performance for uniformly distributed targets.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-025-10200-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Effective tracking of unknown clustered targets using a distributed team of mobile robots\",\"authors\":\"Jun Chen, Philip Dames, Shinkyu Park\",\"doi\":\"10.1007/s10514-025-10200-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Distributed multi-target tracking is a canonical task for multi-robot systems, encompassing applications from environmental monitoring to disaster response to surveillance. In many situations the unknown distribution of the targets in a search area is non-uniform, e.g., herds of animals moving together. This paper develops a novel distributed multi-robot multi-target tracking algorithm to effectively search for and track clustered targets. There are two key features. First, there are two parallel estimators, one to provide the best guess of the current states of targets and a second to provide a coarse, long-term distribution of clusters. Second, robots use the power diagram to divide the search space between agents in a way that effectively trades off between tracking detected targets within high density areas and searching for other potential targets. Extensive simulation experiments demonstrate the efficacy of the proposed method and show that it outperforms other approaches in tracking accuracy of clustered targets while maintain good performance for uniformly distributed targets.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"49 2\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-025-10200-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-025-10200-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-025-10200-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Effective tracking of unknown clustered targets using a distributed team of mobile robots
Distributed multi-target tracking is a canonical task for multi-robot systems, encompassing applications from environmental monitoring to disaster response to surveillance. In many situations the unknown distribution of the targets in a search area is non-uniform, e.g., herds of animals moving together. This paper develops a novel distributed multi-robot multi-target tracking algorithm to effectively search for and track clustered targets. There are two key features. First, there are two parallel estimators, one to provide the best guess of the current states of targets and a second to provide a coarse, long-term distribution of clusters. Second, robots use the power diagram to divide the search space between agents in a way that effectively trades off between tracking detected targets within high density areas and searching for other potential targets. Extensive simulation experiments demonstrate the efficacy of the proposed method and show that it outperforms other approaches in tracking accuracy of clustered targets while maintain good performance for uniformly distributed targets.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.