Yingying Shao, Di Lu, Wenke Jin, Sibao Chen, Lifeng Han, Tao Wang, Leilei Fu, Haiyang Yu
{"title":"环维黄素D靶向LIF通过LIF/p38MAPK/p62调控的肝癌细胞自噬抑制肿瘤进展","authors":"Yingying Shao, Di Lu, Wenke Jin, Sibao Chen, Lifeng Han, Tao Wang, Leilei Fu, Haiyang Yu","doi":"10.1002/mco2.70227","DOIUrl":null,"url":null,"abstract":"<p>Leukemia inhibitory factor (LIF) exerts an oncogenic function in several types of cancer, including hepatocellular carcinoma (HCC). However, small-molecule inhibitors of LIF haven't been established. Here, we identified that LIF was remarkably overexpressed in HCC by multi-omics approaches, indicating that inhibition of LIF would be a promising therapeutic strategy. Inhibiting LIF could suppress proliferation and metastasis by activating p38MAPK/p62-modulated mitophagy. Interestingly, we found that the natural small-molecule Cyclovirobuxine-D (CVB-D), was a new inhibitor of cytoplasmic LIF in HCC. We further validated LIF as a potential target of CVB-D through biotin-modified CVB-D-Probe utilizing mass spectrometry. Mechanistically, we showed that CVB-D could bind to LIF at Val145, thereby inducing mitophagy, accompanied by cell cycle arrest and inhibition of invasion and migration. Moreover, we demonstrated that CVB-D had a therapeutic potential by targeting LIF-modulated mitophagy in patient-derived xenograft (PDX) models, which would elucidate LIF as a druggable target and regulatory mechanisms and exploit CVB-D as the novel small-molecule inhibitor of LIF for future HCC drug discovery.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70227","citationCount":"0","resultStr":"{\"title\":\"Targeting LIF With Cyclovirobuxine D to Suppress Tumor Progression via LIF/p38MAPK/p62-Modulated Mitophagy in Hepatocellular Carcinoma\",\"authors\":\"Yingying Shao, Di Lu, Wenke Jin, Sibao Chen, Lifeng Han, Tao Wang, Leilei Fu, Haiyang Yu\",\"doi\":\"10.1002/mco2.70227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Leukemia inhibitory factor (LIF) exerts an oncogenic function in several types of cancer, including hepatocellular carcinoma (HCC). However, small-molecule inhibitors of LIF haven't been established. Here, we identified that LIF was remarkably overexpressed in HCC by multi-omics approaches, indicating that inhibition of LIF would be a promising therapeutic strategy. Inhibiting LIF could suppress proliferation and metastasis by activating p38MAPK/p62-modulated mitophagy. Interestingly, we found that the natural small-molecule Cyclovirobuxine-D (CVB-D), was a new inhibitor of cytoplasmic LIF in HCC. We further validated LIF as a potential target of CVB-D through biotin-modified CVB-D-Probe utilizing mass spectrometry. Mechanistically, we showed that CVB-D could bind to LIF at Val145, thereby inducing mitophagy, accompanied by cell cycle arrest and inhibition of invasion and migration. Moreover, we demonstrated that CVB-D had a therapeutic potential by targeting LIF-modulated mitophagy in patient-derived xenograft (PDX) models, which would elucidate LIF as a druggable target and regulatory mechanisms and exploit CVB-D as the novel small-molecule inhibitor of LIF for future HCC drug discovery.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70227\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
白血病抑制因子(LIF)在几种类型的癌症中发挥致癌作用,包括肝细胞癌(HCC)。然而,LIF的小分子抑制剂尚未建立。在这里,我们通过多组学方法发现,LIF在HCC中显著过表达,这表明抑制LIF将是一种很有前景的治疗策略。抑制LIF可以通过激活p38MAPK/p62调节的有丝分裂来抑制增殖和转移。有趣的是,我们发现天然小分子环维罗布辛- d (CVB-D)是HCC细胞质LIF的新抑制剂。我们进一步利用质谱技术通过生物素修饰的CVB-D探针验证了LIF作为CVB-D的潜在靶标。在机制上,我们发现CVB-D可以在Val145位点与LIF结合,从而诱导有丝分裂,伴随细胞周期阻滞和侵袭和迁移的抑制。此外,我们证明了CVB-D在患者来源的异种移植(PDX)模型中具有治疗潜力,这将阐明LIF是一个可药物靶点和调节机制,并利用CVB-D作为LIF的新型小分子抑制剂,用于未来的HCC药物发现。
Targeting LIF With Cyclovirobuxine D to Suppress Tumor Progression via LIF/p38MAPK/p62-Modulated Mitophagy in Hepatocellular Carcinoma
Leukemia inhibitory factor (LIF) exerts an oncogenic function in several types of cancer, including hepatocellular carcinoma (HCC). However, small-molecule inhibitors of LIF haven't been established. Here, we identified that LIF was remarkably overexpressed in HCC by multi-omics approaches, indicating that inhibition of LIF would be a promising therapeutic strategy. Inhibiting LIF could suppress proliferation and metastasis by activating p38MAPK/p62-modulated mitophagy. Interestingly, we found that the natural small-molecule Cyclovirobuxine-D (CVB-D), was a new inhibitor of cytoplasmic LIF in HCC. We further validated LIF as a potential target of CVB-D through biotin-modified CVB-D-Probe utilizing mass spectrometry. Mechanistically, we showed that CVB-D could bind to LIF at Val145, thereby inducing mitophagy, accompanied by cell cycle arrest and inhibition of invasion and migration. Moreover, we demonstrated that CVB-D had a therapeutic potential by targeting LIF-modulated mitophagy in patient-derived xenograft (PDX) models, which would elucidate LIF as a druggable target and regulatory mechanisms and exploit CVB-D as the novel small-molecule inhibitor of LIF for future HCC drug discovery.