柔性PVDF-HFP,镍mof基混合膜作为锂离子电池的高效电解质

IF 2.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Aparna Potdar, Dr. Soumava Biswas, Dr. Dev Kumar Thapa, Prof. Bharat Kale, Dr. Milind V. Kulkarni, Prof. Murthy Chavali
{"title":"柔性PVDF-HFP,镍mof基混合膜作为锂离子电池的高效电解质","authors":"Aparna Potdar,&nbsp;Dr. Soumava Biswas,&nbsp;Dr. Dev Kumar Thapa,&nbsp;Prof. Bharat Kale,&nbsp;Dr. Milind V. Kulkarni,&nbsp;Prof. Murthy Chavali","doi":"10.1002/ejic.202500075","DOIUrl":null,"url":null,"abstract":"<p>The present investigation demonstrates a highly stable composite polymer electrolyte (CPE) membrane (NiPF6), designed to enhance the performance of solid-state lithium-ion batteries. The new CPE membrane has been fabricated by the blending of Ni-BDC metal-organic framework (MOF) (BDC: 1,4-benzenedicarboxylate), lithium salt, and PVDF-HFP (poly (vinylidene fluoride-co-hexa fluoropropylene)). The XRD of the CPE membrane clearly shows the presence of 2D Ni-BDC MOF. The mechanical properties and flame test validate the robustness of the membrane. The detailed morphological study of the membrane shows the presence of a porous surface and a layered structure. The CPE membrane exhibits a high ionic conductivity i. e. 1.5×10<sup>−4</sup> S/cm at room temperature, which has increased to 5.99×10<sup>−4</sup> S/cm at 55 °C. Considering the high ionic conductivity of the CPE membrane it has been used as an electrolyte for Li-ion cells. The Li-ion cell fabricated using the Ni-BDC CPE membrane has achieved a discharge capacity of 169.52 mAh/g @ 0.1 C rate, with impressive capacity retention(97 %). The cell showed a 149 mAh/g discharge capacity @1 C with 85 % retention over 300 cycles. Further, it delivered a capacity of around 128.55 mAh/g @ 2 C with 81 % capacity retention at 200 cycles. This enhancement is attributed to the incorporation of 2D Ni-BDC MOF, which has a porous and layered structure that might significantly improve the Li-ion conduction path. Hence, the enhancement in ionic conductivity is self-explanatory. The stable Li-ion conduction path might be formed at a higher C rate, hence the retention capacity has been increased @2 C rate compared to 1 C. More significantly, this is a promising approach for advancing solid-state lithium-ion battery technology by using new composite polymer electrolytes with efficient performance at room temperature.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"28 14","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible PVDF-HFP, Nickel MOF-based Hybrid Membrane as an Efficient Electrolyte for Lithium-Ion Batteries\",\"authors\":\"Aparna Potdar,&nbsp;Dr. Soumava Biswas,&nbsp;Dr. Dev Kumar Thapa,&nbsp;Prof. Bharat Kale,&nbsp;Dr. Milind V. Kulkarni,&nbsp;Prof. Murthy Chavali\",\"doi\":\"10.1002/ejic.202500075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present investigation demonstrates a highly stable composite polymer electrolyte (CPE) membrane (NiPF6), designed to enhance the performance of solid-state lithium-ion batteries. The new CPE membrane has been fabricated by the blending of Ni-BDC metal-organic framework (MOF) (BDC: 1,4-benzenedicarboxylate), lithium salt, and PVDF-HFP (poly (vinylidene fluoride-co-hexa fluoropropylene)). The XRD of the CPE membrane clearly shows the presence of 2D Ni-BDC MOF. The mechanical properties and flame test validate the robustness of the membrane. The detailed morphological study of the membrane shows the presence of a porous surface and a layered structure. The CPE membrane exhibits a high ionic conductivity i. e. 1.5×10<sup>−4</sup> S/cm at room temperature, which has increased to 5.99×10<sup>−4</sup> S/cm at 55 °C. Considering the high ionic conductivity of the CPE membrane it has been used as an electrolyte for Li-ion cells. The Li-ion cell fabricated using the Ni-BDC CPE membrane has achieved a discharge capacity of 169.52 mAh/g @ 0.1 C rate, with impressive capacity retention(97 %). The cell showed a 149 mAh/g discharge capacity @1 C with 85 % retention over 300 cycles. Further, it delivered a capacity of around 128.55 mAh/g @ 2 C with 81 % capacity retention at 200 cycles. This enhancement is attributed to the incorporation of 2D Ni-BDC MOF, which has a porous and layered structure that might significantly improve the Li-ion conduction path. Hence, the enhancement in ionic conductivity is self-explanatory. The stable Li-ion conduction path might be formed at a higher C rate, hence the retention capacity has been increased @2 C rate compared to 1 C. More significantly, this is a promising approach for advancing solid-state lithium-ion battery technology by using new composite polymer electrolytes with efficient performance at room temperature.</p>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":\"28 14\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202500075\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202500075","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了一种高稳定性的复合聚合物电解质(CPE)膜(NiPF6),旨在提高固态锂离子电池的性能。采用Ni-BDC金属有机骨架(MOF) (BDC: 1,4-苯二甲酸酯)、锂盐和PVDF-HFP(聚偏氟乙烯-共六氟丙烯)共混制备了新型CPE膜。CPE膜的XRD分析清楚地显示了二维Ni-BDC MOF的存在。力学性能和火焰试验验证了膜的坚固性。膜的详细形态学研究表明,存在多孔表面和层状结构。CPE膜具有较高的离子电导率。室温下为1.5×10−4 S/cm, 55℃时为5.99×10−4 S/cm。由于CPE膜具有较高的离子电导率,它已被用作锂离子电池的电解质。使用Ni-BDC CPE膜制备的锂离子电池在0.1℃时的放电容量达到169.52 mAh/g,并具有令人印象深刻的容量保持率(97%)。电池的放电容量为149毫安时/克,在300次循环中保持85%的保留率。此外,它还提供了约128.55 mAh/g @ 2c的容量,在200次循环中保持81%的容量。这种增强归因于2D Ni-BDC MOF的掺入,该MOF具有多孔和分层结构,可能显著改善锂离子的传导路径。因此,离子电导率的增强是不言自明的。在较高的C速率下,可以形成稳定的锂离子传导路径,因此,与1c相比,在2 C速率下,保持容量有所增加。更重要的是,这是一种很有前途的方法,通过使用在室温下具有高效性能的新型复合聚合物电解质来推进固态锂离子电池技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible PVDF-HFP, Nickel MOF-based Hybrid Membrane as an Efficient Electrolyte for Lithium-Ion Batteries

The present investigation demonstrates a highly stable composite polymer electrolyte (CPE) membrane (NiPF6), designed to enhance the performance of solid-state lithium-ion batteries. The new CPE membrane has been fabricated by the blending of Ni-BDC metal-organic framework (MOF) (BDC: 1,4-benzenedicarboxylate), lithium salt, and PVDF-HFP (poly (vinylidene fluoride-co-hexa fluoropropylene)). The XRD of the CPE membrane clearly shows the presence of 2D Ni-BDC MOF. The mechanical properties and flame test validate the robustness of the membrane. The detailed morphological study of the membrane shows the presence of a porous surface and a layered structure. The CPE membrane exhibits a high ionic conductivity i. e. 1.5×10−4 S/cm at room temperature, which has increased to 5.99×10−4 S/cm at 55 °C. Considering the high ionic conductivity of the CPE membrane it has been used as an electrolyte for Li-ion cells. The Li-ion cell fabricated using the Ni-BDC CPE membrane has achieved a discharge capacity of 169.52 mAh/g @ 0.1 C rate, with impressive capacity retention(97 %). The cell showed a 149 mAh/g discharge capacity @1 C with 85 % retention over 300 cycles. Further, it delivered a capacity of around 128.55 mAh/g @ 2 C with 81 % capacity retention at 200 cycles. This enhancement is attributed to the incorporation of 2D Ni-BDC MOF, which has a porous and layered structure that might significantly improve the Li-ion conduction path. Hence, the enhancement in ionic conductivity is self-explanatory. The stable Li-ion conduction path might be formed at a higher C rate, hence the retention capacity has been increased @2 C rate compared to 1 C. More significantly, this is a promising approach for advancing solid-state lithium-ion battery technology by using new composite polymer electrolytes with efficient performance at room temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Inorganic Chemistry
European Journal of Inorganic Chemistry 化学-无机化学与核化学
CiteScore
4.30
自引率
4.30%
发文量
419
审稿时长
1.3 months
期刊介绍: The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry: Chemische Berichte Bulletin des Sociétés Chimiques Belges Bulletin de la Société Chimique de France Gazzetta Chimica Italiana Recueil des Travaux Chimiques des Pays-Bas Anales de Química Chimika Chronika Revista Portuguesa de Química ACH—Models in Chemistry Polish Journal of Chemistry The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信