Rui Tian , Zhe Wu , Yufen Wang , Chuangpeng Li , Fengping Liu , Yueguang Rong
{"title":"独立于ESCRT的自噬体的内溶酶体吞噬","authors":"Rui Tian , Zhe Wu , Yufen Wang , Chuangpeng Li , Fengping Liu , Yueguang Rong","doi":"10.1016/j.bbrc.2025.152060","DOIUrl":null,"url":null,"abstract":"<div><div>Endolysosomes, considered the cellular recycling compartments, receive and degrade materials from multiple pathways. However, whether endolysosomes can acquire cargo through alternative mechanisms remains unclear. Here, we identify a previously unrecognized endolysosomal pathway for material uptake. In this process, endolysosomes extend two membrane protrusions that envelop and ultimately engulf autophagosomes, independently of autophagosome-endolysosome fusion and the endosomal sorting complex required for transport complex (ESCRT)-mediated microautophagy. The endolysosomes containing internalized autophagosomes, acquire additional autophagosomes through homotypic fusion. A subset of autophagosomes is marked by F-actin on their membranes and the majority of them contain the ER protein Sec61β and the peroxisomal protein Pex16 within their lumens, whereas mitochondria remain excluded. Our discovery of this endolysosomal process unveils a previously uncharacterized pathway for cargo acquisition by endolysosomes.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"772 ","pages":"Article 152060"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endolysosomal engulfment of autophagosomes independent of ESCRT\",\"authors\":\"Rui Tian , Zhe Wu , Yufen Wang , Chuangpeng Li , Fengping Liu , Yueguang Rong\",\"doi\":\"10.1016/j.bbrc.2025.152060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Endolysosomes, considered the cellular recycling compartments, receive and degrade materials from multiple pathways. However, whether endolysosomes can acquire cargo through alternative mechanisms remains unclear. Here, we identify a previously unrecognized endolysosomal pathway for material uptake. In this process, endolysosomes extend two membrane protrusions that envelop and ultimately engulf autophagosomes, independently of autophagosome-endolysosome fusion and the endosomal sorting complex required for transport complex (ESCRT)-mediated microautophagy. The endolysosomes containing internalized autophagosomes, acquire additional autophagosomes through homotypic fusion. A subset of autophagosomes is marked by F-actin on their membranes and the majority of them contain the ER protein Sec61β and the peroxisomal protein Pex16 within their lumens, whereas mitochondria remain excluded. Our discovery of this endolysosomal process unveils a previously uncharacterized pathway for cargo acquisition by endolysosomes.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"772 \",\"pages\":\"Article 152060\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X25007740\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25007740","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Endolysosomal engulfment of autophagosomes independent of ESCRT
Endolysosomes, considered the cellular recycling compartments, receive and degrade materials from multiple pathways. However, whether endolysosomes can acquire cargo through alternative mechanisms remains unclear. Here, we identify a previously unrecognized endolysosomal pathway for material uptake. In this process, endolysosomes extend two membrane protrusions that envelop and ultimately engulf autophagosomes, independently of autophagosome-endolysosome fusion and the endosomal sorting complex required for transport complex (ESCRT)-mediated microautophagy. The endolysosomes containing internalized autophagosomes, acquire additional autophagosomes through homotypic fusion. A subset of autophagosomes is marked by F-actin on their membranes and the majority of them contain the ER protein Sec61β and the peroxisomal protein Pex16 within their lumens, whereas mitochondria remain excluded. Our discovery of this endolysosomal process unveils a previously uncharacterized pathway for cargo acquisition by endolysosomes.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics