D.P.M. da Costa , M.M. Kasaei , R.J.C. Carbas , E.A.S. Marques , R.F.V. Sampaio , I.M.F. Bragança , L.F.M. da Silva
{"title":"一种新型电动汽车电池混合母线互连的热电分析","authors":"D.P.M. da Costa , M.M. Kasaei , R.J.C. Carbas , E.A.S. Marques , R.F.V. Sampaio , I.M.F. Bragança , L.F.M. da Silva","doi":"10.1016/j.energy.2025.136629","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable and efficient busbar connections are critical for electric vehicle battery performance, yet conventional joining methods struggle with joining dissimilar materials such as copper and aluminum. This paper investigates a novel solution for joining hybrid copper-aluminum busbars using a technique called hole hemming, which eliminates the need for heating or additional elements. The focus is placed on the thermal-electrical performance of hole-hemming joints. Two configurations are studied: joints with and without branches. Numerical models analyse how sheet thickness affects temperature, electric current density, electric potential, and resistance, including models with cantered holes to study hole inclusion effects. Experimental tests are conducted on material strips and unit cells to assess electrical resistance changes with temperature and the effect of Joule heating on joint configurations. Compression using a hydraulic press is applied to improve contact, leading to significant electrical resistance improvements (78 % reduction for branched joints and 36 % for branchless ones). Mechanical shear tests before and after compression show a peak shear load of 4.54 kN and 13.84 mm displacement for branched joints, with slightly lower values for branchless joints. Despite a minor decrease in mechanical performance after compression, the improved thermal-electrical performance of the joints outweighs this. The findings highlight the promising potential of hole-hemmed joints for enhancing hybrid busbar connections.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"329 ","pages":"Article 136629"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-electrical analysis of a novel interconnection for hybrid busbars in electric vehicle batteries\",\"authors\":\"D.P.M. da Costa , M.M. Kasaei , R.J.C. Carbas , E.A.S. Marques , R.F.V. Sampaio , I.M.F. Bragança , L.F.M. da Silva\",\"doi\":\"10.1016/j.energy.2025.136629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable and efficient busbar connections are critical for electric vehicle battery performance, yet conventional joining methods struggle with joining dissimilar materials such as copper and aluminum. This paper investigates a novel solution for joining hybrid copper-aluminum busbars using a technique called hole hemming, which eliminates the need for heating or additional elements. The focus is placed on the thermal-electrical performance of hole-hemming joints. Two configurations are studied: joints with and without branches. Numerical models analyse how sheet thickness affects temperature, electric current density, electric potential, and resistance, including models with cantered holes to study hole inclusion effects. Experimental tests are conducted on material strips and unit cells to assess electrical resistance changes with temperature and the effect of Joule heating on joint configurations. Compression using a hydraulic press is applied to improve contact, leading to significant electrical resistance improvements (78 % reduction for branched joints and 36 % for branchless ones). Mechanical shear tests before and after compression show a peak shear load of 4.54 kN and 13.84 mm displacement for branched joints, with slightly lower values for branchless joints. Despite a minor decrease in mechanical performance after compression, the improved thermal-electrical performance of the joints outweighs this. The findings highlight the promising potential of hole-hemmed joints for enhancing hybrid busbar connections.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"329 \",\"pages\":\"Article 136629\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225022716\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225022716","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermal-electrical analysis of a novel interconnection for hybrid busbars in electric vehicle batteries
Reliable and efficient busbar connections are critical for electric vehicle battery performance, yet conventional joining methods struggle with joining dissimilar materials such as copper and aluminum. This paper investigates a novel solution for joining hybrid copper-aluminum busbars using a technique called hole hemming, which eliminates the need for heating or additional elements. The focus is placed on the thermal-electrical performance of hole-hemming joints. Two configurations are studied: joints with and without branches. Numerical models analyse how sheet thickness affects temperature, electric current density, electric potential, and resistance, including models with cantered holes to study hole inclusion effects. Experimental tests are conducted on material strips and unit cells to assess electrical resistance changes with temperature and the effect of Joule heating on joint configurations. Compression using a hydraulic press is applied to improve contact, leading to significant electrical resistance improvements (78 % reduction for branched joints and 36 % for branchless ones). Mechanical shear tests before and after compression show a peak shear load of 4.54 kN and 13.84 mm displacement for branched joints, with slightly lower values for branchless joints. Despite a minor decrease in mechanical performance after compression, the improved thermal-electrical performance of the joints outweighs this. The findings highlight the promising potential of hole-hemmed joints for enhancing hybrid busbar connections.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.