磷酸化模拟人细胞质支链转氨酶的晶体结构

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Elizabeth S. Dare , Robert H. Newman , Myra E. Conway , Ming Dong
{"title":"磷酸化模拟人细胞质支链转氨酶的晶体结构","authors":"Elizabeth S. Dare ,&nbsp;Robert H. Newman ,&nbsp;Myra E. Conway ,&nbsp;Ming Dong","doi":"10.1016/j.abb.2025.110479","DOIUrl":null,"url":null,"abstract":"<div><div>The phosphorylation sites of the human cytosolic Branched Chain Aminotransferase (hBCATc) mediated by mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated-kinase 2 (ERK2, also known as MAPK1) were mapped. The crystal structures of the phosphorylation mimics at T33 and T36 were determined. The modified transaminase activity of these variants was analyzed. Although there were no major conformational changes in the phosphorylation mimics of hBCAT, a regional conformational change at the interdomain loop was observed mainly in mutant T33E. Consistently, when the catalytic turnovers of the T33E and T36E mutants were comparable to the wild type of hBCATc, the K<sub>M</sub> dropped significantly compared to the wild type, indicating a shift of the substrate binding affinity in the mutants. Taken together, this indicated the phosphorylation of hBCATc by ERK2 is affecting the hBCATc's transaminase activity.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"770 ","pages":"Article 110479"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structures of the phosphorylation mimics of human cytosolic branched chain aminotransferase\",\"authors\":\"Elizabeth S. Dare ,&nbsp;Robert H. Newman ,&nbsp;Myra E. Conway ,&nbsp;Ming Dong\",\"doi\":\"10.1016/j.abb.2025.110479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The phosphorylation sites of the human cytosolic Branched Chain Aminotransferase (hBCATc) mediated by mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated-kinase 2 (ERK2, also known as MAPK1) were mapped. The crystal structures of the phosphorylation mimics at T33 and T36 were determined. The modified transaminase activity of these variants was analyzed. Although there were no major conformational changes in the phosphorylation mimics of hBCAT, a regional conformational change at the interdomain loop was observed mainly in mutant T33E. Consistently, when the catalytic turnovers of the T33E and T36E mutants were comparable to the wild type of hBCATc, the K<sub>M</sub> dropped significantly compared to the wild type, indicating a shift of the substrate binding affinity in the mutants. Taken together, this indicated the phosphorylation of hBCATc by ERK2 is affecting the hBCATc's transaminase activity.</div></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":\"770 \",\"pages\":\"Article 110479\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986125001924\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125001924","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

绘制了丝裂原活化蛋白激酶(MAPK)/细胞外信号调节激酶2 (ERK2,也称为MAPK1)介导的人细胞质支链氨基转移酶(hBCATc)的磷酸化位点。测定了T33和T36位点磷酸化模拟物的晶体结构。对这些变异的转氨酶活性进行了分析。虽然在hBCAT的磷酸化模拟中没有主要的构象变化,但主要在突变体T33E中观察到域间环的区域构象变化。同样,当T33E和T36E突变体的催化转化率与野生型hBCATc相当时,KM比野生型显著下降,表明突变体的底物结合亲和力发生了变化。综上所述,这表明ERK2对hBCATc的磷酸化影响了hBCATc的转氨酶活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal structures of the phosphorylation mimics of human cytosolic branched chain aminotransferase
The phosphorylation sites of the human cytosolic Branched Chain Aminotransferase (hBCATc) mediated by mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated-kinase 2 (ERK2, also known as MAPK1) were mapped. The crystal structures of the phosphorylation mimics at T33 and T36 were determined. The modified transaminase activity of these variants was analyzed. Although there were no major conformational changes in the phosphorylation mimics of hBCAT, a regional conformational change at the interdomain loop was observed mainly in mutant T33E. Consistently, when the catalytic turnovers of the T33E and T36E mutants were comparable to the wild type of hBCATc, the KM dropped significantly compared to the wild type, indicating a shift of the substrate binding affinity in the mutants. Taken together, this indicated the phosphorylation of hBCATc by ERK2 is affecting the hBCATc's transaminase activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信