Shijie Zhang , Jiacheng Liu , Xudan Yao , Jian Yang , Yu’e Ma , Wandong Wang
{"title":"一种确定复合材料-金属DCB连接I型牵引-分离关系的新实验方法:背面应变推导法","authors":"Shijie Zhang , Jiacheng Liu , Xudan Yao , Jian Yang , Yu’e Ma , Wandong Wang","doi":"10.1016/j.compositesb.2025.112610","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel experimental approach to determine the mode I traction–separation relationship (TSR) and fracture toughness for bonded composite-to-metal double cantilever beam (DCB) joints. CFRP-to-Ti DCB joints, equipped with distributed optical fiber sensors (DOFS) on their back faces, were deliberately designed and tested to validate the proposed method. The back face strain distributions measured using DOFS were utilized to derive the bonded interface TSR based on Euler–Bernoulli beam theory. The TSR derived from the proposed methodology demonstrated strong agreement with that from the established direct method. In addition to determining the TSR, this approach provides extensive insights into fracture behavior, including crack length measurement, cohesive length, and cohesive stress distributions. Moreover, the method is easy to implement in laboratory settings and holds promise for applications under extreme loading conditions.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"304 ","pages":"Article 112610"},"PeriodicalIF":14.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel experimental approach to determine mode I traction–separation relationship for bonded composites-to-metal DCB joints: A back face strain derived method\",\"authors\":\"Shijie Zhang , Jiacheng Liu , Xudan Yao , Jian Yang , Yu’e Ma , Wandong Wang\",\"doi\":\"10.1016/j.compositesb.2025.112610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a novel experimental approach to determine the mode I traction–separation relationship (TSR) and fracture toughness for bonded composite-to-metal double cantilever beam (DCB) joints. CFRP-to-Ti DCB joints, equipped with distributed optical fiber sensors (DOFS) on their back faces, were deliberately designed and tested to validate the proposed method. The back face strain distributions measured using DOFS were utilized to derive the bonded interface TSR based on Euler–Bernoulli beam theory. The TSR derived from the proposed methodology demonstrated strong agreement with that from the established direct method. In addition to determining the TSR, this approach provides extensive insights into fracture behavior, including crack length measurement, cohesive length, and cohesive stress distributions. Moreover, the method is easy to implement in laboratory settings and holds promise for applications under extreme loading conditions.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"304 \",\"pages\":\"Article 112610\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825005116\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825005116","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel experimental approach to determine mode I traction–separation relationship for bonded composites-to-metal DCB joints: A back face strain derived method
This paper proposes a novel experimental approach to determine the mode I traction–separation relationship (TSR) and fracture toughness for bonded composite-to-metal double cantilever beam (DCB) joints. CFRP-to-Ti DCB joints, equipped with distributed optical fiber sensors (DOFS) on their back faces, were deliberately designed and tested to validate the proposed method. The back face strain distributions measured using DOFS were utilized to derive the bonded interface TSR based on Euler–Bernoulli beam theory. The TSR derived from the proposed methodology demonstrated strong agreement with that from the established direct method. In addition to determining the TSR, this approach provides extensive insights into fracture behavior, including crack length measurement, cohesive length, and cohesive stress distributions. Moreover, the method is easy to implement in laboratory settings and holds promise for applications under extreme loading conditions.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.