{"title":"离散贝叶斯网络作为替代模型在能源系统分析中的探索性应用","authors":"Rainer Kelk , Luca Podofillini , Vinh N. Dang , Evangelos Panos","doi":"10.1016/j.apenergy.2025.126146","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates data-based discrete Bayesian Belief Networks (BBNs) as surrogate energy system models for result analysis and interactive analyses, such as what-if analyses. A simplified version of the Swiss TIMES (STEM) model, referred to as STEM-lite, is used for demonstration. A method to optimize the BBN model is devised, based on performance metrics related to the accuracy of the BBN predictions, calculated over data records unseen by the BBN in the training phase. Further validation of the BBN on a set of seven scenarios yielded an average relative error below 2 %, suggesting adequate performance as surrogate model. The application of the surrogate BBN model is demonstrated to highlight its benefits, which include enabling interactive analysis (supported by the visualization of key variables, their relationships and interactions), fast and intuitive uncertainty propagation, and support for goal-driven analysis (backward reasoning from outcomes to the inputs that produce these outcomes). The surrogate BBN presented here was developed to elaborate the methods for constructing, validating, and using BBN models for energy systems analysis and to demonstrate the benefits of such a model; at this stage, this model is not intended for energy systems and economics policy discussions. For practical applications, future work is needed to reduce the number of data records to construct the BBN, to introduce the option to treat the time dependence of the input variables, and to allow for larger BBN models (involving more variables) that reflect the increasing complexity of energy systems.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"394 ","pages":"Article 126146"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explorative application of discrete Bayesian networks as surrogate models for energy systems analysis\",\"authors\":\"Rainer Kelk , Luca Podofillini , Vinh N. Dang , Evangelos Panos\",\"doi\":\"10.1016/j.apenergy.2025.126146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates data-based discrete Bayesian Belief Networks (BBNs) as surrogate energy system models for result analysis and interactive analyses, such as what-if analyses. A simplified version of the Swiss TIMES (STEM) model, referred to as STEM-lite, is used for demonstration. A method to optimize the BBN model is devised, based on performance metrics related to the accuracy of the BBN predictions, calculated over data records unseen by the BBN in the training phase. Further validation of the BBN on a set of seven scenarios yielded an average relative error below 2 %, suggesting adequate performance as surrogate model. The application of the surrogate BBN model is demonstrated to highlight its benefits, which include enabling interactive analysis (supported by the visualization of key variables, their relationships and interactions), fast and intuitive uncertainty propagation, and support for goal-driven analysis (backward reasoning from outcomes to the inputs that produce these outcomes). The surrogate BBN presented here was developed to elaborate the methods for constructing, validating, and using BBN models for energy systems analysis and to demonstrate the benefits of such a model; at this stage, this model is not intended for energy systems and economics policy discussions. For practical applications, future work is needed to reduce the number of data records to construct the BBN, to introduce the option to treat the time dependence of the input variables, and to allow for larger BBN models (involving more variables) that reflect the increasing complexity of energy systems.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"394 \",\"pages\":\"Article 126146\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925008761\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925008761","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Explorative application of discrete Bayesian networks as surrogate models for energy systems analysis
This work investigates data-based discrete Bayesian Belief Networks (BBNs) as surrogate energy system models for result analysis and interactive analyses, such as what-if analyses. A simplified version of the Swiss TIMES (STEM) model, referred to as STEM-lite, is used for demonstration. A method to optimize the BBN model is devised, based on performance metrics related to the accuracy of the BBN predictions, calculated over data records unseen by the BBN in the training phase. Further validation of the BBN on a set of seven scenarios yielded an average relative error below 2 %, suggesting adequate performance as surrogate model. The application of the surrogate BBN model is demonstrated to highlight its benefits, which include enabling interactive analysis (supported by the visualization of key variables, their relationships and interactions), fast and intuitive uncertainty propagation, and support for goal-driven analysis (backward reasoning from outcomes to the inputs that produce these outcomes). The surrogate BBN presented here was developed to elaborate the methods for constructing, validating, and using BBN models for energy systems analysis and to demonstrate the benefits of such a model; at this stage, this model is not intended for energy systems and economics policy discussions. For practical applications, future work is needed to reduce the number of data records to construct the BBN, to introduce the option to treat the time dependence of the input variables, and to allow for larger BBN models (involving more variables) that reflect the increasing complexity of energy systems.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.