利用分形梯度蜂窝状反特斯拉阀增强微通道散热器散热和温度均匀性

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Chun-Yu Chen, Min Yang, Yuanyuan Li, Gui Lu
{"title":"利用分形梯度蜂窝状反特斯拉阀增强微通道散热器散热和温度均匀性","authors":"Chun-Yu Chen, Min Yang, Yuanyuan Li, Gui Lu","doi":"10.1016/j.csite.2025.106371","DOIUrl":null,"url":null,"abstract":"This study introduces a fractal gradient honeycomb-reverse Tesla valve configuration (HC-RTV-GD) to enhance heat transfer and temperature uniformity in high-flux thermal management systems. Through comparative analysis with conventional Tesla valves and honeycomb structures, the HC-RTV-GD leverages hierarchical bifurcation and controlled turbulence generation to achieve superior heat transfer performance. At high Reynolds numbers, the design significantly reduces thermal resistance and suppresses maximum wall temperatures while flattening longitudinal temperature gradients, mitigating thermal stress risks. The improved temperature uniformity stems from gradient-driven flow redistribution, which minimizes stagnant zones and sustains coolant velocity in secondary channels. Thermal improvements come with hydraulic trade-offs: the gradient geometry amplifies flow resistance through localized vortices, elevating pressure drop and friction coefficients compared to conventional designs. Performance evaluation confirms the HC-RTV-GD’s viability exclusively in high-flux scenarios, where heat transfer gains outweigh pumping penalties. A neural network-enhanced optimization framework further identifies optimal coolant parameters, balancing thermal and hydraulic efficiency. The HC-RTV-GD advances cooling system design by strategically combining geometric complexity with turbulence control, prioritizing thermal uniformity in extreme heat flux environments.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"33 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing heat dissipation and temperature uniformity of microchannel heat sinks using fractal gradient honeycomb-reverse Tesla valve configuration\",\"authors\":\"Chun-Yu Chen, Min Yang, Yuanyuan Li, Gui Lu\",\"doi\":\"10.1016/j.csite.2025.106371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a fractal gradient honeycomb-reverse Tesla valve configuration (HC-RTV-GD) to enhance heat transfer and temperature uniformity in high-flux thermal management systems. Through comparative analysis with conventional Tesla valves and honeycomb structures, the HC-RTV-GD leverages hierarchical bifurcation and controlled turbulence generation to achieve superior heat transfer performance. At high Reynolds numbers, the design significantly reduces thermal resistance and suppresses maximum wall temperatures while flattening longitudinal temperature gradients, mitigating thermal stress risks. The improved temperature uniformity stems from gradient-driven flow redistribution, which minimizes stagnant zones and sustains coolant velocity in secondary channels. Thermal improvements come with hydraulic trade-offs: the gradient geometry amplifies flow resistance through localized vortices, elevating pressure drop and friction coefficients compared to conventional designs. Performance evaluation confirms the HC-RTV-GD’s viability exclusively in high-flux scenarios, where heat transfer gains outweigh pumping penalties. A neural network-enhanced optimization framework further identifies optimal coolant parameters, balancing thermal and hydraulic efficiency. The HC-RTV-GD advances cooling system design by strategically combining geometric complexity with turbulence control, prioritizing thermal uniformity in extreme heat flux environments.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2025.106371\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2025.106371","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种分形梯度蜂巢式反特斯拉阀配置(HC-RTV-GD),以增强高通量热管理系统的传热和温度均匀性。通过与传统特斯拉阀和蜂窝结构的对比分析,HC-RTV-GD利用分层分岔和可控湍流产生来实现优越的传热性能。在高雷诺数下,该设计显著降低了热阻,抑制了最大壁面温度,同时使纵向温度梯度变平,降低了热应力风险。温度均匀性的改善源于梯度驱动的流动再分配,这可以最大限度地减少停滞区,并保持次级通道中的冷却剂速度。热性能的改善伴随着水力方面的权衡:与传统设计相比,梯度几何形状通过局部涡流放大了流动阻力,提高了压降和摩擦系数。性能评估证实了HC-RTV-GD在高通量情况下的可行性,在这种情况下,传热收益大于泵送损失。神经网络增强的优化框架进一步确定最佳冷却剂参数,平衡热效率和水力效率。HC-RTV-GD通过将几何复杂性与湍流控制相结合,优先考虑极端热通量环境下的热均匀性,从而推进了冷却系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing heat dissipation and temperature uniformity of microchannel heat sinks using fractal gradient honeycomb-reverse Tesla valve configuration
This study introduces a fractal gradient honeycomb-reverse Tesla valve configuration (HC-RTV-GD) to enhance heat transfer and temperature uniformity in high-flux thermal management systems. Through comparative analysis with conventional Tesla valves and honeycomb structures, the HC-RTV-GD leverages hierarchical bifurcation and controlled turbulence generation to achieve superior heat transfer performance. At high Reynolds numbers, the design significantly reduces thermal resistance and suppresses maximum wall temperatures while flattening longitudinal temperature gradients, mitigating thermal stress risks. The improved temperature uniformity stems from gradient-driven flow redistribution, which minimizes stagnant zones and sustains coolant velocity in secondary channels. Thermal improvements come with hydraulic trade-offs: the gradient geometry amplifies flow resistance through localized vortices, elevating pressure drop and friction coefficients compared to conventional designs. Performance evaluation confirms the HC-RTV-GD’s viability exclusively in high-flux scenarios, where heat transfer gains outweigh pumping penalties. A neural network-enhanced optimization framework further identifies optimal coolant parameters, balancing thermal and hydraulic efficiency. The HC-RTV-GD advances cooling system design by strategically combining geometric complexity with turbulence control, prioritizing thermal uniformity in extreme heat flux environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信