Zhuojia Lin, Jianwei Chen, Kezhou Fan, Jicheng Yi, Honggang Chen, Shibing Zou, Hongyu Min, Yitong Xu, Man Yu Lam, Sergeev A. Aleksandr, Kam Sing Wong, He Yan, Keyou Yan
{"title":"抑制界面光降解以实现高效稳定的全钙钛矿串联太阳能电池","authors":"Zhuojia Lin, Jianwei Chen, Kezhou Fan, Jicheng Yi, Honggang Chen, Shibing Zou, Hongyu Min, Yitong Xu, Man Yu Lam, Sergeev A. Aleksandr, Kam Sing Wong, He Yan, Keyou Yan","doi":"10.1002/anie.202424825","DOIUrl":null,"url":null,"abstract":"All perovskite tandem solar cells (PTSCs) were expected to overcome the Shockley‐Queisser limit of single‐junction perovskite solar cells (PSCs). Nevertheless, wide bandgap (WBG) subcells suffer from large photovoltage losses and device instability due to extensive film defect, interfacial degradation and phase segregation. Herein, a polymeric multi‐dentate anchoring (PMDA) strategy by introducing poly(carbazole phosphonic acid) was employed to engineer the bottom interface and suppress phase segregation. The reinforced and homogeneous anchorage by multiple repeat phosphonic acid groups onto NiOx significantly optimise the bottom interface, suppress unfavourable interfacial reactions and thus alleviate phase segregation of WBG perovskite. As a result, the PMDA‐modified WBG PSCs showed higher power conversion efficiency (PCE) than the control device (19.84% versus 18.18%), along with better device photostability (T80 = 1200 versus 500 hours). Coupled with narrow bandgap (NBG) PSCs, the PMDA‐modified PTSCs reached a PCE of up to 28.51% with device operation photostability over 700 hours (T80).","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"133 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppressing the Interface Photodegradation Towards Efficient and Stable All Perovskite Tandem Solar Cells\",\"authors\":\"Zhuojia Lin, Jianwei Chen, Kezhou Fan, Jicheng Yi, Honggang Chen, Shibing Zou, Hongyu Min, Yitong Xu, Man Yu Lam, Sergeev A. Aleksandr, Kam Sing Wong, He Yan, Keyou Yan\",\"doi\":\"10.1002/anie.202424825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All perovskite tandem solar cells (PTSCs) were expected to overcome the Shockley‐Queisser limit of single‐junction perovskite solar cells (PSCs). Nevertheless, wide bandgap (WBG) subcells suffer from large photovoltage losses and device instability due to extensive film defect, interfacial degradation and phase segregation. Herein, a polymeric multi‐dentate anchoring (PMDA) strategy by introducing poly(carbazole phosphonic acid) was employed to engineer the bottom interface and suppress phase segregation. The reinforced and homogeneous anchorage by multiple repeat phosphonic acid groups onto NiOx significantly optimise the bottom interface, suppress unfavourable interfacial reactions and thus alleviate phase segregation of WBG perovskite. As a result, the PMDA‐modified WBG PSCs showed higher power conversion efficiency (PCE) than the control device (19.84% versus 18.18%), along with better device photostability (T80 = 1200 versus 500 hours). Coupled with narrow bandgap (NBG) PSCs, the PMDA‐modified PTSCs reached a PCE of up to 28.51% with device operation photostability over 700 hours (T80).\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202424825\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424825","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Suppressing the Interface Photodegradation Towards Efficient and Stable All Perovskite Tandem Solar Cells
All perovskite tandem solar cells (PTSCs) were expected to overcome the Shockley‐Queisser limit of single‐junction perovskite solar cells (PSCs). Nevertheless, wide bandgap (WBG) subcells suffer from large photovoltage losses and device instability due to extensive film defect, interfacial degradation and phase segregation. Herein, a polymeric multi‐dentate anchoring (PMDA) strategy by introducing poly(carbazole phosphonic acid) was employed to engineer the bottom interface and suppress phase segregation. The reinforced and homogeneous anchorage by multiple repeat phosphonic acid groups onto NiOx significantly optimise the bottom interface, suppress unfavourable interfacial reactions and thus alleviate phase segregation of WBG perovskite. As a result, the PMDA‐modified WBG PSCs showed higher power conversion efficiency (PCE) than the control device (19.84% versus 18.18%), along with better device photostability (T80 = 1200 versus 500 hours). Coupled with narrow bandgap (NBG) PSCs, the PMDA‐modified PTSCs reached a PCE of up to 28.51% with device operation photostability over 700 hours (T80).
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.