{"title":"随机振荡器的拓扑锁相","authors":"Michalis Chatzittofi, Ramin Golestanian, Jaime Agudo-Canalejo","doi":"10.1038/s41467-025-60070-3","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of many nanoscale biological and synthetic systems such as enzymes and molecular motors are activated by thermal noise, and driven out-of-equilibrium by local energy dissipation. Because the energies dissipated in these systems are comparable to the thermal energy, one would generally expect their dynamics to be highly stochastic. Here, by studying a thermodynamically-consistent model of two coupled noise-activated oscillators, we show that this is not always the case. Thanks to a novel phenomenon that we term topological phase locking (TPL), the coupled dynamics become quasi-deterministic, resulting in a greatly enhanced average speed of the oscillators. TPL is characterized by the emergence of a band of periodic orbits that form a torus knot in phase space, along which the two oscillators advance in rational multiples of each other. The effectively conservative dynamics along this band coexists with the basin of attraction of the dissipative fixed point. We further show that TPL arises as a result of a complex, infinite hierarchy of global bifurcations. Our results have implications for understanding the dynamics of a wide range of systems, from biological enzymes and molecular motors to engineered nanoscale electronic, optical, or mechanical oscillators.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"138 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological phase locking in stochastic oscillators\",\"authors\":\"Michalis Chatzittofi, Ramin Golestanian, Jaime Agudo-Canalejo\",\"doi\":\"10.1038/s41467-025-60070-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dynamics of many nanoscale biological and synthetic systems such as enzymes and molecular motors are activated by thermal noise, and driven out-of-equilibrium by local energy dissipation. Because the energies dissipated in these systems are comparable to the thermal energy, one would generally expect their dynamics to be highly stochastic. Here, by studying a thermodynamically-consistent model of two coupled noise-activated oscillators, we show that this is not always the case. Thanks to a novel phenomenon that we term topological phase locking (TPL), the coupled dynamics become quasi-deterministic, resulting in a greatly enhanced average speed of the oscillators. TPL is characterized by the emergence of a band of periodic orbits that form a torus knot in phase space, along which the two oscillators advance in rational multiples of each other. The effectively conservative dynamics along this band coexists with the basin of attraction of the dissipative fixed point. We further show that TPL arises as a result of a complex, infinite hierarchy of global bifurcations. Our results have implications for understanding the dynamics of a wide range of systems, from biological enzymes and molecular motors to engineered nanoscale electronic, optical, or mechanical oscillators.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60070-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60070-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Topological phase locking in stochastic oscillators
The dynamics of many nanoscale biological and synthetic systems such as enzymes and molecular motors are activated by thermal noise, and driven out-of-equilibrium by local energy dissipation. Because the energies dissipated in these systems are comparable to the thermal energy, one would generally expect their dynamics to be highly stochastic. Here, by studying a thermodynamically-consistent model of two coupled noise-activated oscillators, we show that this is not always the case. Thanks to a novel phenomenon that we term topological phase locking (TPL), the coupled dynamics become quasi-deterministic, resulting in a greatly enhanced average speed of the oscillators. TPL is characterized by the emergence of a band of periodic orbits that form a torus knot in phase space, along which the two oscillators advance in rational multiples of each other. The effectively conservative dynamics along this band coexists with the basin of attraction of the dissipative fixed point. We further show that TPL arises as a result of a complex, infinite hierarchy of global bifurcations. Our results have implications for understanding the dynamics of a wide range of systems, from biological enzymes and molecular motors to engineered nanoscale electronic, optical, or mechanical oscillators.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.