Yanmin Cheng , Yue Li , Yulu Zhang , Hui Liu , Bei Yang , Jun Zhu , Haibin Kuang
{"title":"妊娠期接触微塑料和纳米塑料会损害胎盘滋养细胞的合胞作用,从而导致妊娠结局不佳","authors":"Yanmin Cheng , Yue Li , Yulu Zhang , Hui Liu , Bei Yang , Jun Zhu , Haibin Kuang","doi":"10.1016/j.envpol.2025.126520","DOIUrl":null,"url":null,"abstract":"<div><div>The omnipresent micro- and nanoplastics (MNPs), emerging environmental contaminants, have caused a widespread concern because of their potential threats to public health. Increasing evidence has indicated that MNPs were deeply involved in poor pregnancy outcomes, but the detailed mechanism remains obscure. In this research, we firstly identified that maternal exposure to MNPs during gestation increased both the number and rate of embryo resorption, while reducing embryonic weight, placental diameter and placental weight. This was accompanied by disrupted progesterone and estradiol synthesis in MNPs-treated mouse placentas. In addition, our data suggested that MNPs exposure disturbed placental development, as evidenced by the reduction of the total area of placenta, area of spongiotrophoblast layer and area of labyrinth layer. Subsequently, <em>in vivo</em> and <em>in vitro</em> experiments further indicated that MNPs compromised syncytialization process and decreased the expression of syncytialization markers in mouse placentas and human placental trophoblasts. Further investigation indicated that PERK/eIF2α/ATF4 signaling was activated in MNPs-treated mouse placentas and human placental trophoblasts. More importantly, inhibition of PERK partially restored syncytialization insufficiency caused by MNPs administration. On the whole, our results suggested that gestational exposure to MNPs disturbed placental trophoblasts syncytialization possibly through activating PERK/eIF2α/ATF4 pathway, resulting in aberrant placentation and poor pregnancy outcomes.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"381 ","pages":"Article 126520"},"PeriodicalIF":7.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gestational exposure to micro- and nanoplastics leads to poor pregnancy outcomes by impairing placental trophoblast syncytialization\",\"authors\":\"Yanmin Cheng , Yue Li , Yulu Zhang , Hui Liu , Bei Yang , Jun Zhu , Haibin Kuang\",\"doi\":\"10.1016/j.envpol.2025.126520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The omnipresent micro- and nanoplastics (MNPs), emerging environmental contaminants, have caused a widespread concern because of their potential threats to public health. Increasing evidence has indicated that MNPs were deeply involved in poor pregnancy outcomes, but the detailed mechanism remains obscure. In this research, we firstly identified that maternal exposure to MNPs during gestation increased both the number and rate of embryo resorption, while reducing embryonic weight, placental diameter and placental weight. This was accompanied by disrupted progesterone and estradiol synthesis in MNPs-treated mouse placentas. In addition, our data suggested that MNPs exposure disturbed placental development, as evidenced by the reduction of the total area of placenta, area of spongiotrophoblast layer and area of labyrinth layer. Subsequently, <em>in vivo</em> and <em>in vitro</em> experiments further indicated that MNPs compromised syncytialization process and decreased the expression of syncytialization markers in mouse placentas and human placental trophoblasts. Further investigation indicated that PERK/eIF2α/ATF4 signaling was activated in MNPs-treated mouse placentas and human placental trophoblasts. More importantly, inhibition of PERK partially restored syncytialization insufficiency caused by MNPs administration. On the whole, our results suggested that gestational exposure to MNPs disturbed placental trophoblasts syncytialization possibly through activating PERK/eIF2α/ATF4 pathway, resulting in aberrant placentation and poor pregnancy outcomes.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"381 \",\"pages\":\"Article 126520\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125008930\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125008930","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Gestational exposure to micro- and nanoplastics leads to poor pregnancy outcomes by impairing placental trophoblast syncytialization
The omnipresent micro- and nanoplastics (MNPs), emerging environmental contaminants, have caused a widespread concern because of their potential threats to public health. Increasing evidence has indicated that MNPs were deeply involved in poor pregnancy outcomes, but the detailed mechanism remains obscure. In this research, we firstly identified that maternal exposure to MNPs during gestation increased both the number and rate of embryo resorption, while reducing embryonic weight, placental diameter and placental weight. This was accompanied by disrupted progesterone and estradiol synthesis in MNPs-treated mouse placentas. In addition, our data suggested that MNPs exposure disturbed placental development, as evidenced by the reduction of the total area of placenta, area of spongiotrophoblast layer and area of labyrinth layer. Subsequently, in vivo and in vitro experiments further indicated that MNPs compromised syncytialization process and decreased the expression of syncytialization markers in mouse placentas and human placental trophoblasts. Further investigation indicated that PERK/eIF2α/ATF4 signaling was activated in MNPs-treated mouse placentas and human placental trophoblasts. More importantly, inhibition of PERK partially restored syncytialization insufficiency caused by MNPs administration. On the whole, our results suggested that gestational exposure to MNPs disturbed placental trophoblasts syncytialization possibly through activating PERK/eIF2α/ATF4 pathway, resulting in aberrant placentation and poor pregnancy outcomes.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.