通过混合动力培训,降低中国自上而下的二氧化碳排放和汇

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Junting Zhong, Deying Wang, Lifeng Guo, Changhong Miao, Da Zhang, Fei Yu, Weihua Pan, Fugang Li, Bo Peng, Lichun Li, Lei Ren, Lingyun Zhu, Yan Chen, Chongyuan Wu, Jiaying Li, Xiliang Zhang, Xiaoye Zhang
{"title":"通过混合动力培训,降低中国自上而下的二氧化碳排放和汇","authors":"Junting Zhong, Deying Wang, Lifeng Guo, Changhong Miao, Da Zhang, Fei Yu, Weihua Pan, Fugang Li, Bo Peng, Lichun Li, Lei Ren, Lingyun Zhu, Yan Chen, Chongyuan Wu, Jiaying Li, Xiliang Zhang, Xiaoye Zhang","doi":"10.1038/s41612-025-01071-3","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric CO<sub>2</sub>-based top-down approaches enable objective evaluation of climate mitigation efforts but face dual constraints: sparse monitoring limits spatial resolution, while emission heterogeneity hampers downscaling. To enhance downscaling accuracy, we present a hybrid training method integrating multi-resolution inverse fluxes—national-scale coarse grids with fine-scale grids (Shanxi/Jiangsu). Experiments show hybrid training outperforms conventional approaches, increasing <i>R</i>² from 0.56 to 0.61 with 2.7%-area fine grids and reducing prediction biases compared to data fusion without high-resolution inputs while vastly exceeding nearest-neighbor interpolation (<i>R</i>² = 0.39). By combining gap-filled CO/NO<sub>2</sub> columns, nighttime lights, population density, vegetation indices, and meteorological data, we downscaled national 45 km eight-day CO<sub>2</sub> fluxes to daily 10 km resolution. The derived dataset reveals emission inequities: top 20% cities contribute more than 50% of national emissions, exposing regional capacity disparities. This framework leverages expanding CO<sub>2</sub> monitoring networks to progressively refine spatiotemporal resolution, enabling city-level verification of mitigation actions.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"21 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downscaling top-down CO2 emissions and sinks in China empowered by hybrid training\",\"authors\":\"Junting Zhong, Deying Wang, Lifeng Guo, Changhong Miao, Da Zhang, Fei Yu, Weihua Pan, Fugang Li, Bo Peng, Lichun Li, Lei Ren, Lingyun Zhu, Yan Chen, Chongyuan Wu, Jiaying Li, Xiliang Zhang, Xiaoye Zhang\",\"doi\":\"10.1038/s41612-025-01071-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric CO<sub>2</sub>-based top-down approaches enable objective evaluation of climate mitigation efforts but face dual constraints: sparse monitoring limits spatial resolution, while emission heterogeneity hampers downscaling. To enhance downscaling accuracy, we present a hybrid training method integrating multi-resolution inverse fluxes—national-scale coarse grids with fine-scale grids (Shanxi/Jiangsu). Experiments show hybrid training outperforms conventional approaches, increasing <i>R</i>² from 0.56 to 0.61 with 2.7%-area fine grids and reducing prediction biases compared to data fusion without high-resolution inputs while vastly exceeding nearest-neighbor interpolation (<i>R</i>² = 0.39). By combining gap-filled CO/NO<sub>2</sub> columns, nighttime lights, population density, vegetation indices, and meteorological data, we downscaled national 45 km eight-day CO<sub>2</sub> fluxes to daily 10 km resolution. The derived dataset reveals emission inequities: top 20% cities contribute more than 50% of national emissions, exposing regional capacity disparities. This framework leverages expanding CO<sub>2</sub> monitoring networks to progressively refine spatiotemporal resolution, enabling city-level verification of mitigation actions.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01071-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01071-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于大气二氧化碳的自上而下方法能够对气候减缓努力进行客观评估,但面临双重限制:稀疏监测限制了空间分辨率,而排放异质性阻碍了缩小尺度。为了提高降尺度精度,提出了一种多分辨率逆通量-粗网格-细网格(山西/江苏)相结合的混合训练方法。实验表明,混合训练优于传统方法,使用面积为2.7%的精细网格将R²从0.56提高到0.61,与没有高分辨率输入的数据融合相比,减少了预测偏差,同时大大超过了最近邻插值(R²= 0.39)。通过结合空白填充CO/NO2柱、夜间灯光、人口密度、植被指数和气象数据,我们将全国45公里8天二氧化碳通量缩小到每日10公里分辨率。导出的数据集揭示了排放不平等:排名前20%的城市贡献了全国排放量的50%以上,暴露了区域能力差异。该框架利用不断扩大的二氧化碳监测网络,逐步完善时空分辨率,从而能够在城市层面核实缓解行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Downscaling top-down CO2 emissions and sinks in China empowered by hybrid training

Downscaling top-down CO2 emissions and sinks in China empowered by hybrid training

Atmospheric CO2-based top-down approaches enable objective evaluation of climate mitigation efforts but face dual constraints: sparse monitoring limits spatial resolution, while emission heterogeneity hampers downscaling. To enhance downscaling accuracy, we present a hybrid training method integrating multi-resolution inverse fluxes—national-scale coarse grids with fine-scale grids (Shanxi/Jiangsu). Experiments show hybrid training outperforms conventional approaches, increasing R² from 0.56 to 0.61 with 2.7%-area fine grids and reducing prediction biases compared to data fusion without high-resolution inputs while vastly exceeding nearest-neighbor interpolation (R² = 0.39). By combining gap-filled CO/NO2 columns, nighttime lights, population density, vegetation indices, and meteorological data, we downscaled national 45 km eight-day CO2 fluxes to daily 10 km resolution. The derived dataset reveals emission inequities: top 20% cities contribute more than 50% of national emissions, exposing regional capacity disparities. This framework leverages expanding CO2 monitoring networks to progressively refine spatiotemporal resolution, enabling city-level verification of mitigation actions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信