通过机械联锁的低聚物集成,高效和坚固的内在可拉伸有机太阳能电池

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xinrui Liu, Xuanang Luo, Jingchuan Chen, Zhiyuan Yang, Yingying Liu, Ruixue Bai, Lei Ying and Wenkai Zhong
{"title":"通过机械联锁的低聚物集成,高效和坚固的内在可拉伸有机太阳能电池","authors":"Xinrui Liu, Xuanang Luo, Jingchuan Chen, Zhiyuan Yang, Yingying Liu, Ruixue Bai, Lei Ying and Wenkai Zhong","doi":"10.1039/D5TA02518D","DOIUrl":null,"url":null,"abstract":"<p >Intrinsically stretchable organic solar cells (IS-OSCs) offer promising solutions for powering wearable electronics and skin-integrated sensors, yet reconciling mechanical durability with high efficiency remains a fundamental challenge. Here, we propose, for the first time, integrating a mechanically interlocked oligo[2]rotaxane into an all-polymer PTzBI-oF:PY-IT blend. The oligomer's sliding crown ether macrocycles form electrostatic interactions with both donor and acceptor π-backbones and enable mobility along the axial chain under strain. These unique features facilitate molecular-level stress dissipation while preserving the fibrillar network critical for charge transport. At the optimal loading, the ternary blend exhibits a significantly increased fracture strain of 17.8% and a crack-onset strain of 30%, while retaining a rigid device power conversion efficiency (PCE) of 14.88%. The corresponding IS-OSCs retain 80% of their initial PCE under 34% tensile strain, establishing mechanically interlocked structures as a transformative strategy for developing high-performance and robust stretchable organic electronics.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 26","pages":" 20447-20455"},"PeriodicalIF":9.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and robust intrinsically stretchable organic solar cells via mechanically interlocked oligomer integration†\",\"authors\":\"Xinrui Liu, Xuanang Luo, Jingchuan Chen, Zhiyuan Yang, Yingying Liu, Ruixue Bai, Lei Ying and Wenkai Zhong\",\"doi\":\"10.1039/D5TA02518D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Intrinsically stretchable organic solar cells (IS-OSCs) offer promising solutions for powering wearable electronics and skin-integrated sensors, yet reconciling mechanical durability with high efficiency remains a fundamental challenge. Here, we propose, for the first time, integrating a mechanically interlocked oligo[2]rotaxane into an all-polymer PTzBI-oF:PY-IT blend. The oligomer's sliding crown ether macrocycles form electrostatic interactions with both donor and acceptor π-backbones and enable mobility along the axial chain under strain. These unique features facilitate molecular-level stress dissipation while preserving the fibrillar network critical for charge transport. At the optimal loading, the ternary blend exhibits a significantly increased fracture strain of 17.8% and a crack-onset strain of 30%, while retaining a rigid device power conversion efficiency (PCE) of 14.88%. The corresponding IS-OSCs retain 80% of their initial PCE under 34% tensile strain, establishing mechanically interlocked structures as a transformative strategy for developing high-performance and robust stretchable organic electronics.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 26\",\"pages\":\" 20447-20455\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02518d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02518d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本质上可拉伸的有机太阳能电池(IS-OSCs)为可穿戴电子产品和皮肤集成传感器提供了有前途的解决方案,但协调机械耐用性和高效率仍然是一个根本性的挑战。在这里,我们首次提出将机械互锁的低聚[2]轮烷集成到全聚合物PTzBI-oF:PY-IT共混物中。低聚物的滑动冠醚大环与供体和受体π-骨架形成静电相互作用,并在应变下沿轴链迁移。这些独特的特性促进了分子水平的应变能量耗散,同时保留了对电荷传输至关重要的纤维网络。在最佳加载条件下,三元共混物的断裂应变和裂纹启动应变分别增加了17.8%和30%,同时保持了14.88%的刚性器件功率转换效率(PCE)。相应的IS-OSCs在34%的拉伸应变下保留了80%的初始PCE,建立了机械联锁结构,作为开发高性能和坚固的可拉伸有机电子器件的变革策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient and robust intrinsically stretchable organic solar cells via mechanically interlocked oligomer integration†

Efficient and robust intrinsically stretchable organic solar cells via mechanically interlocked oligomer integration†

Intrinsically stretchable organic solar cells (IS-OSCs) offer promising solutions for powering wearable electronics and skin-integrated sensors, yet reconciling mechanical durability with high efficiency remains a fundamental challenge. Here, we propose, for the first time, integrating a mechanically interlocked oligo[2]rotaxane into an all-polymer PTzBI-oF:PY-IT blend. The oligomer's sliding crown ether macrocycles form electrostatic interactions with both donor and acceptor π-backbones and enable mobility along the axial chain under strain. These unique features facilitate molecular-level stress dissipation while preserving the fibrillar network critical for charge transport. At the optimal loading, the ternary blend exhibits a significantly increased fracture strain of 17.8% and a crack-onset strain of 30%, while retaining a rigid device power conversion efficiency (PCE) of 14.88%. The corresponding IS-OSCs retain 80% of their initial PCE under 34% tensile strain, establishing mechanically interlocked structures as a transformative strategy for developing high-performance and robust stretchable organic electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信