基于深度做梦方法的金属有机框架逆设计

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Conor Cleeton, Lev Sarkisov
{"title":"基于深度做梦方法的金属有机框架逆设计","authors":"Conor Cleeton, Lev Sarkisov","doi":"10.1038/s41467-025-59952-3","DOIUrl":null,"url":null,"abstract":"<p>Exploring the expansive and largely untapped chemical space of metal-organic frameworks (MOFs) holds promise for revolutionising the field of materials science. MOFs, hailed for their modular architecture, offer unmatched flexibility in customising functionalities to meet specific application needs. However, navigating this chemical space to identify optimal MOF structures poses a significant challenge. Traditional high-throughput computational screening (HTCS), while useful, is often limited by a distribution bias towards materials not aligned with the desired functionalities. To overcome these limitations, this study adopts a “deep dreaming” methodology to optimise MOFs in silico, aiming to generate structures with systematically shifted properties that are closer to target functionalities from the outset. Our approach integrates property prediction and structure optimisation within a single interpretable framework, leveraging a specialised chemical language model augmented with attention mechanisms. Focusing on a curated set of MOF properties critical to applications like carbon capture and energy storage, we demonstrate how deep dreaming can be utilised as a tool for targeted material design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"41 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse design of metal-organic frameworks using deep dreaming approaches\",\"authors\":\"Conor Cleeton, Lev Sarkisov\",\"doi\":\"10.1038/s41467-025-59952-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exploring the expansive and largely untapped chemical space of metal-organic frameworks (MOFs) holds promise for revolutionising the field of materials science. MOFs, hailed for their modular architecture, offer unmatched flexibility in customising functionalities to meet specific application needs. However, navigating this chemical space to identify optimal MOF structures poses a significant challenge. Traditional high-throughput computational screening (HTCS), while useful, is often limited by a distribution bias towards materials not aligned with the desired functionalities. To overcome these limitations, this study adopts a “deep dreaming” methodology to optimise MOFs in silico, aiming to generate structures with systematically shifted properties that are closer to target functionalities from the outset. Our approach integrates property prediction and structure optimisation within a single interpretable framework, leveraging a specialised chemical language model augmented with attention mechanisms. Focusing on a curated set of MOF properties critical to applications like carbon capture and energy storage, we demonstrate how deep dreaming can be utilised as a tool for targeted material design.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59952-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59952-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

探索金属有机框架(mof)的广阔而尚未开发的化学空间有望彻底改变材料科学领域。mof以其模块化架构而闻名,在定制功能方面提供了无与伦比的灵活性,以满足特定的应用需求。然而,在这个化学空间中导航以确定最佳的MOF结构是一个重大挑战。传统的高通量计算筛选(HTCS)虽然有用,但往往受到与所需功能不一致的材料分布偏倚的限制。为了克服这些限制,本研究采用了一种“深度梦想”方法来优化硅片mof,旨在从一开始就产生具有系统转移属性的结构,这些结构更接近目标功能。我们的方法在一个可解释的框架内集成了属性预测和结构优化,利用了一个专门的化学语言模型和注意力机制。专注于对碳捕获和能量储存等应用至关重要的MOF特性,我们展示了如何将深度做梦用作目标材料设计的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inverse design of metal-organic frameworks using deep dreaming approaches

Inverse design of metal-organic frameworks using deep dreaming approaches

Exploring the expansive and largely untapped chemical space of metal-organic frameworks (MOFs) holds promise for revolutionising the field of materials science. MOFs, hailed for their modular architecture, offer unmatched flexibility in customising functionalities to meet specific application needs. However, navigating this chemical space to identify optimal MOF structures poses a significant challenge. Traditional high-throughput computational screening (HTCS), while useful, is often limited by a distribution bias towards materials not aligned with the desired functionalities. To overcome these limitations, this study adopts a “deep dreaming” methodology to optimise MOFs in silico, aiming to generate structures with systematically shifted properties that are closer to target functionalities from the outset. Our approach integrates property prediction and structure optimisation within a single interpretable framework, leveraging a specialised chemical language model augmented with attention mechanisms. Focusing on a curated set of MOF properties critical to applications like carbon capture and energy storage, we demonstrate how deep dreaming can be utilised as a tool for targeted material design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信