{"title":"基于双极性环境稳定碲的可重构人工突触用于神经形态计算","authors":"Haoting Ying, Manzhang Xu, Kanghao Xie, Zishun Li, Xuewen Wang, Xiaorui Zheng","doi":"10.1021/acsami.5c03429","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for next-generation computing and sensing systems. However, most studies of artificial synapses mimic only static plasticity, which is far from achieving the complex behaviors of the human brain. Here, we report a reliable neuromorphic computing system that integrates a top floating gate memory architecture and uses peculiar ambipolar tellurium (Te) as a channel material to fabricate reliable nonvolatile memory cells. The memory device clearly exhibits exceptional retention (∼10<sup>4</sup> s) and endurance (∼10<sup>4</sup> cycles) properties for ambipolar memory with on/off ratios of 10<sup>8</sup> (electrons) and 10<sup>6</sup> (holes). Furthermore, we have also achieved reconfigurable excitatory and inhibitory synapse functions based on a Te ambipolarity device and explored its application in neuromorphic computing for recognition of different levels of complexity images with high accuracy generally above 90%, demonstrating its potential in neuromorphic computing. These findings highlight the prospects of ambipolar Te memory for advancing the future in memory computing hardware.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"31 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Artificial Synapses Based on Ambipolar Environmentally Stable Tellurium for Neuromorphic Computing\",\"authors\":\"Haoting Ying, Manzhang Xu, Kanghao Xie, Zishun Li, Xuewen Wang, Xiaorui Zheng\",\"doi\":\"10.1021/acsami.5c03429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for next-generation computing and sensing systems. However, most studies of artificial synapses mimic only static plasticity, which is far from achieving the complex behaviors of the human brain. Here, we report a reliable neuromorphic computing system that integrates a top floating gate memory architecture and uses peculiar ambipolar tellurium (Te) as a channel material to fabricate reliable nonvolatile memory cells. The memory device clearly exhibits exceptional retention (∼10<sup>4</sup> s) and endurance (∼10<sup>4</sup> cycles) properties for ambipolar memory with on/off ratios of 10<sup>8</sup> (electrons) and 10<sup>6</sup> (holes). Furthermore, we have also achieved reconfigurable excitatory and inhibitory synapse functions based on a Te ambipolarity device and explored its application in neuromorphic computing for recognition of different levels of complexity images with high accuracy generally above 90%, demonstrating its potential in neuromorphic computing. These findings highlight the prospects of ambipolar Te memory for advancing the future in memory computing hardware.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c03429\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03429","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Reconfigurable Artificial Synapses Based on Ambipolar Environmentally Stable Tellurium for Neuromorphic Computing
Neuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for next-generation computing and sensing systems. However, most studies of artificial synapses mimic only static plasticity, which is far from achieving the complex behaviors of the human brain. Here, we report a reliable neuromorphic computing system that integrates a top floating gate memory architecture and uses peculiar ambipolar tellurium (Te) as a channel material to fabricate reliable nonvolatile memory cells. The memory device clearly exhibits exceptional retention (∼104 s) and endurance (∼104 cycles) properties for ambipolar memory with on/off ratios of 108 (electrons) and 106 (holes). Furthermore, we have also achieved reconfigurable excitatory and inhibitory synapse functions based on a Te ambipolarity device and explored its application in neuromorphic computing for recognition of different levels of complexity images with high accuracy generally above 90%, demonstrating its potential in neuromorphic computing. These findings highlight the prospects of ambipolar Te memory for advancing the future in memory computing hardware.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.