基于双极性环境稳定碲的可重构人工突触用于神经形态计算

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haoting Ying, Manzhang Xu, Kanghao Xie, Zishun Li, Xuewen Wang, Xiaorui Zheng
{"title":"基于双极性环境稳定碲的可重构人工突触用于神经形态计算","authors":"Haoting Ying, Manzhang Xu, Kanghao Xie, Zishun Li, Xuewen Wang, Xiaorui Zheng","doi":"10.1021/acsami.5c03429","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for next-generation computing and sensing systems. However, most studies of artificial synapses mimic only static plasticity, which is far from achieving the complex behaviors of the human brain. Here, we report a reliable neuromorphic computing system that integrates a top floating gate memory architecture and uses peculiar ambipolar tellurium (Te) as a channel material to fabricate reliable nonvolatile memory cells. The memory device clearly exhibits exceptional retention (∼10<sup>4</sup> s) and endurance (∼10<sup>4</sup> cycles) properties for ambipolar memory with on/off ratios of 10<sup>8</sup> (electrons) and 10<sup>6</sup> (holes). Furthermore, we have also achieved reconfigurable excitatory and inhibitory synapse functions based on a Te ambipolarity device and explored its application in neuromorphic computing for recognition of different levels of complexity images with high accuracy generally above 90%, demonstrating its potential in neuromorphic computing. These findings highlight the prospects of ambipolar Te memory for advancing the future in memory computing hardware.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"31 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Artificial Synapses Based on Ambipolar Environmentally Stable Tellurium for Neuromorphic Computing\",\"authors\":\"Haoting Ying, Manzhang Xu, Kanghao Xie, Zishun Li, Xuewen Wang, Xiaorui Zheng\",\"doi\":\"10.1021/acsami.5c03429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for next-generation computing and sensing systems. However, most studies of artificial synapses mimic only static plasticity, which is far from achieving the complex behaviors of the human brain. Here, we report a reliable neuromorphic computing system that integrates a top floating gate memory architecture and uses peculiar ambipolar tellurium (Te) as a channel material to fabricate reliable nonvolatile memory cells. The memory device clearly exhibits exceptional retention (∼10<sup>4</sup> s) and endurance (∼10<sup>4</sup> cycles) properties for ambipolar memory with on/off ratios of 10<sup>8</sup> (electrons) and 10<sup>6</sup> (holes). Furthermore, we have also achieved reconfigurable excitatory and inhibitory synapse functions based on a Te ambipolarity device and explored its application in neuromorphic computing for recognition of different levels of complexity images with high accuracy generally above 90%, demonstrating its potential in neuromorphic computing. These findings highlight the prospects of ambipolar Te memory for advancing the future in memory computing hardware.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c03429\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03429","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算是冯·诺伊曼瓶颈的一个很有前途的解决方案,正在为下一代计算和传感系统铺平道路。然而,大多数人工突触的研究只模拟静态可塑性,远远不能实现人脑的复杂行为。在这里,我们报告了一个可靠的神经形态计算系统,该系统集成了一个顶部浮动门存储架构,并使用特殊的双极性碲(Te)作为通道材料来制造可靠的非易失性存储单元。对于开关比分别为108(电子)和106(空穴)的双极性存储器,该存储器件明显表现出优异的保留(~ 104 s)和持久(~ 104个周期)特性。此外,我们还基于Te双极性装置实现了可重构的兴奋性和抑制性突触功能,并探索了其在神经形态计算中的应用,用于识别不同复杂程度的图像,准确率一般在90%以上,显示了其在神经形态计算中的潜力。这些发现突出了双极性存储器在内存计算硬件领域的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reconfigurable Artificial Synapses Based on Ambipolar Environmentally Stable Tellurium for Neuromorphic Computing

Reconfigurable Artificial Synapses Based on Ambipolar Environmentally Stable Tellurium for Neuromorphic Computing
Neuromorphic computing, a promising solution to the von Neumann bottleneck, is paving the way for next-generation computing and sensing systems. However, most studies of artificial synapses mimic only static plasticity, which is far from achieving the complex behaviors of the human brain. Here, we report a reliable neuromorphic computing system that integrates a top floating gate memory architecture and uses peculiar ambipolar tellurium (Te) as a channel material to fabricate reliable nonvolatile memory cells. The memory device clearly exhibits exceptional retention (∼104 s) and endurance (∼104 cycles) properties for ambipolar memory with on/off ratios of 108 (electrons) and 106 (holes). Furthermore, we have also achieved reconfigurable excitatory and inhibitory synapse functions based on a Te ambipolarity device and explored its application in neuromorphic computing for recognition of different levels of complexity images with high accuracy generally above 90%, demonstrating its potential in neuromorphic computing. These findings highlight the prospects of ambipolar Te memory for advancing the future in memory computing hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信