情感面部处理背后的振荡脑动力学。

Nathan M Petro, Cooper L Livermore, Seth D Springer, Hannah J Okelberry, Jason A John, Ryan Glesinger, Lucy K Horne, Christine M Embury, Rachel K Spooner, Brittany K Taylor, Giorgia Picci, Tony W Wilson
{"title":"情感面部处理背后的振荡脑动力学。","authors":"Nathan M Petro, Cooper L Livermore, Seth D Springer, Hannah J Okelberry, Jason A John, Ryan Glesinger, Lucy K Horne, Christine M Embury, Rachel K Spooner, Brittany K Taylor, Giorgia Picci, Tony W Wilson","doi":"10.1093/scan/nsaf047","DOIUrl":null,"url":null,"abstract":"<p><p>Facial expressions are ubiquitous and highly reliable social cues. Decades of research has shown that affective faces undergo facilitated processing across a distributed brain network. However, few studies have examined the multispectral brain dynamics underlying affective face processing, which is surprising given the multiple brain regions and rapid temporal dynamics thought to be involved. Herein, we used magnetoencephalography to derive dynamic functional maps of angry, neutral, and happy face processing in healthy adults. We found stronger theta oscillations shortly after the onset of affective relative to neutral faces (0-250 ms), within distributed ventral visual and parietal cortices, and the anterior hippocampus. Early gamma oscillations (100-275 ms) were strongest for angry faces in the inferior parietal lobule, temporoparietal junction, and presupplementary motor cortex. Finally, beta oscillations (175-575 ms) were stronger for neutral relative to affective expressions in the middle occipital and fusiform cortex. These results are consistent with the literature in regard to the critical brain regions, and delineate a distributed network where multispectral oscillatory dynamics support affective face processing through the rapid merging of low-level visual inputs to interpret the emotional meaning of each facial expression.</p>","PeriodicalId":94208,"journal":{"name":"Social cognitive and affective neuroscience","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory brain dynamics underlying affective face processing.\",\"authors\":\"Nathan M Petro, Cooper L Livermore, Seth D Springer, Hannah J Okelberry, Jason A John, Ryan Glesinger, Lucy K Horne, Christine M Embury, Rachel K Spooner, Brittany K Taylor, Giorgia Picci, Tony W Wilson\",\"doi\":\"10.1093/scan/nsaf047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Facial expressions are ubiquitous and highly reliable social cues. Decades of research has shown that affective faces undergo facilitated processing across a distributed brain network. However, few studies have examined the multispectral brain dynamics underlying affective face processing, which is surprising given the multiple brain regions and rapid temporal dynamics thought to be involved. Herein, we used magnetoencephalography to derive dynamic functional maps of angry, neutral, and happy face processing in healthy adults. We found stronger theta oscillations shortly after the onset of affective relative to neutral faces (0-250 ms), within distributed ventral visual and parietal cortices, and the anterior hippocampus. Early gamma oscillations (100-275 ms) were strongest for angry faces in the inferior parietal lobule, temporoparietal junction, and presupplementary motor cortex. Finally, beta oscillations (175-575 ms) were stronger for neutral relative to affective expressions in the middle occipital and fusiform cortex. These results are consistent with the literature in regard to the critical brain regions, and delineate a distributed network where multispectral oscillatory dynamics support affective face processing through the rapid merging of low-level visual inputs to interpret the emotional meaning of each facial expression.</p>\",\"PeriodicalId\":94208,\"journal\":{\"name\":\"Social cognitive and affective neuroscience\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social cognitive and affective neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/scan/nsaf047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/scan/nsaf047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部表情是无处不在且高度可靠的社交线索。几十年的研究表明,有情感的面孔在分布式的大脑网络中得到了便利的处理。然而,很少有研究考察了情感面部处理背后的多光谱大脑动力学,这令人惊讶,因为人们认为涉及多个大脑区域和快速的时间动力学。在此,我们使用脑磁图获得了健康成人愤怒、中性和快乐面孔加工的动态功能图。我们发现,相对于中性面孔,情感面孔出现后不久(0-250毫秒),分布在腹侧视觉皮层和顶叶皮层以及海马前部的θ波振荡更强。愤怒面孔的早期伽马振荡(100-275 ms)在顶叶下小叶、颞顶叶交界处和辅助前运动皮层最强。最后,与情感表达相比,中性表达的β振荡(175-575 ms)在枕叶中部和梭状皮层更强。这些结果与有关关键大脑区域的文献一致,并描绘了一个分布式网络,其中多谱振荡动力学通过快速合并低水平视觉输入来解释每个面部表情的情感含义,从而支持情感面部处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillatory brain dynamics underlying affective face processing.

Facial expressions are ubiquitous and highly reliable social cues. Decades of research has shown that affective faces undergo facilitated processing across a distributed brain network. However, few studies have examined the multispectral brain dynamics underlying affective face processing, which is surprising given the multiple brain regions and rapid temporal dynamics thought to be involved. Herein, we used magnetoencephalography to derive dynamic functional maps of angry, neutral, and happy face processing in healthy adults. We found stronger theta oscillations shortly after the onset of affective relative to neutral faces (0-250 ms), within distributed ventral visual and parietal cortices, and the anterior hippocampus. Early gamma oscillations (100-275 ms) were strongest for angry faces in the inferior parietal lobule, temporoparietal junction, and presupplementary motor cortex. Finally, beta oscillations (175-575 ms) were stronger for neutral relative to affective expressions in the middle occipital and fusiform cortex. These results are consistent with the literature in regard to the critical brain regions, and delineate a distributed network where multispectral oscillatory dynamics support affective face processing through the rapid merging of low-level visual inputs to interpret the emotional meaning of each facial expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信